CHo x khác 0 , y khác 0 và z khác 0 , \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\) = 1 và x = y + z .
CMR : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) = 1
Cho x khác 0, y khác 0, z khác 0 và\(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\)
và x = y + z. CMR: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đề bài có vấn đề bạn nhé !
Đẳng thức <=>1/x+1/y+1/z=1/x-1/y-1/z
<=>2(1/y+1/z)=0
<=> (y+z)/yz=0
<=> y+z=0 do yz khác 0 (đk)
<=> x=0 do x=y+z
đến đây thì vô lí nhé do x khác 0 (đk)
Cho x,y,z khác 0: x+y+z khác 0 và
\(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}\)
Tìm \(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)=?\)
\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}\Rightarrow k=2\Rightarrow x=y=z=1\)
A=6
\(\frac{x-y-z}{x}=1-\frac{y+z}{x}\) tương tự con khác
=> x=y=z
=> A=6
Cho a, b, c và x, y, z là các số khác nhau và khác 0. CMR :
Nếu \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\) và \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)thì \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
Ờm thì đại khái như vầy , dùng thêm hằng cao cấp mới chơi được =))
Link : Bảy hằng đẳng thức đáng nhớ – Wikipedia tiếng Việt
Dùng hằng mở rộng số 4
Ta có :
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
\(\Leftrightarrow ayz+bxz+cxy=0\) (1)
Lại có :
\(\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)^2=\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1^2=1\) (chỗ này dùng cái skill mở rộng)
<=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\left(\frac{xyc}{abc}+\frac{ayz}{abc}+\frac{bzx}{abc}\right)=1\)
<=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\frac{ayz+bxz+cxy}{abc}=1\)
Thay 1 vào
=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}=1\)
mình giải hơi khác 1 chút, nhưng thôi cx đc
Sửa lại :
Lại có :
\(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xyc}{abc}+\frac{yza}{abc}+\frac{zxb}{cba}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2.\frac{ayz+bxz+cxy}{abc}=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
Cho x,y,z khác 0 và x-y-z=0.Tính B=\(\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
Ta có \(x-y-z=0\)
\(\Rightarrow\hept{\begin{cases}x-z=y\\y-x=-z\\z+y=x\end{cases}}\)( 1 )
Ta có:
\(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
\(B=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)
Thay điều ( 1 ) vào biểu thức ta có:
\(B=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)
\(\Rightarrow B=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}\)
\(\Rightarrow B=-1\)
Vậy B = -1
cho xyz khác 0 và \(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}\) tính \(A=(1+\frac{y}{x})(1+\frac{z}{y})(1+\frac{x}{z})\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}=\frac{x-y-z-x+y-z-x-y+z}{x+y+z}\)\(=\frac{-\left(x+y+z\right)}{x+y+z}\)
Nếu \(x+y+z=0\)thì \(\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)
\(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\)
\(=\frac{x+y}{x}.\frac{y+z}{y}.\frac{z+x}{z}\)
\(=\frac{-z}{x}.\frac{-x}{y}.\frac{-y}{z}=-1\)
Nếu \(x+y+z\ne0\)thì \(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}=-1\)
suy ra: \(\frac{x-y-z}{x}=-1\) \(\Rightarrow\) \(x-y-z=-x\) \(\Rightarrow\) \(y+z=2x\)
\(\frac{-x+y-z}{y}=-1\) \(-x+y-z=-y\) \(x+z=2y\)
\(\frac{-x-y+z}{z}=-1\) \(-x-y+z=-z\) \(x+y=2z\)
\(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\)
\(=\frac{x+y}{x}.\frac{y+z}{y}.\frac{x+z}{z}\)
\(=\frac{2z}{x}.\frac{2x}{y}.\frac{2y}{z}=8\)
Cho 3 chữ số x; y; z khác 0 và x + y z khác 0 thỏa mãn điều kiện :
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
Tính giá trị biểu thức :
\(B=\left(1+\frac{x}{y}\right).\left(1+\frac{y}{2}\right).\left(1+\frac{z}{x}\right)\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:\(\frac{ }{ }\)
y+z-x/x=z+x-y/y=x+y-z/z
=y+z-x+z+x-y+x+y-z/x+y+z
=(y-y)+(z-z)-(x-x)+z+x+y/x+y+z
=0+0+0+x+y+z/x+y+z=1
\(\Leftrightarrow\)x=y=z (*)
thay (*) vào B ta có:
B=(1+x/x)(1+x/x)(1+x/x)
=2.2.2=8
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(...=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)( vì x + y + z \(\ne\)0 )
\(\Rightarrow\hept{\begin{cases}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{cases}}\Rightarrow\hept{\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}}\Rightarrow\hept{\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}}\Rightarrow x=y=z\)
Thế x = y = z vào B ta được :
\(B=\left(1+\frac{y}{y}\right)\left(1+\frac{x}{x}\right)\left(1+\frac{z}{z}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)
Cho 3 số x, y, z khác nhau và khác 0 thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(CM:\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}=0\)
Giúp mình nha!!
pppppppppppppppppppppppppppppppppppppppppppppp'ppppppppppppppppppppppppppppp
ppppppppppppp
Tao co:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow yz+xz+xy=0\)
\(Suyra:yz=-xz-xy;xz=-yz-xy;xy=-yz-xz\)
\(\Rightarrow x^2+2yz=x^2+yz-xz-xy=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)
\(\Rightarrow y^2+2xz=y^2+xz-yz-xy=z\left(x-y\right)-y\left(x-y\right)=\left(x-y\right)\left(z-y\right)\)
\(\Rightarrow z^2+2xy=z^2+xy-yz-xz=z\left(z-y\right)-x\left(z-y\right)=\left(z-y\right)\left(z-x\right)\)
\(Thay:\frac{1}{\left(x-y\right)\left(x-z\right)}+\frac{1}{\left(x-y\right)\left(z-y\right)}+\frac{1}{\left(z-y\right)\left(z-x\right)}\)
\(=\frac{z-y+x-z-x+y}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=0\left(dpcm\right)\)
^^
giup mình vơi bài này
cho x khác 0,y khác 0,zkhác 0
\(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\)và x=y+z
chứng minh rằng:\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)=1
theo bài ra ta có : \(\left(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\right)^2=1^2=1\)
Ta thấy
\(\left(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-2.\frac{1}{xy}-2.\frac{1}{xz}+2.\frac{1}{yz}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-2\left(\frac{1}{xy}+\frac{1}{xz}-\frac{1}{yz}\right)\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-2\left(\frac{z+y-x}{xyz}\right)\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-2\left(\frac{0}{xyz}\right)=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\) vì x = y+z nê y+z-x = 0
Vậy \(\left(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1ĐPCM\)
1,cho x,y,z khác 0 và x+y-z=0.tính:
B=\(\left(1-\frac{z}{x}\right).\left(1-\frac{x}{y}\right).\left(1-\frac{y}{z}\right)\)
x+y-z=0
Suy ra x+y=z
-y+z=x
-x+z=y
Thay vô tính B nha
Hok tốt