Nếu số tự nhiên n chia cho 11 dư 4 thì n2 chia cho 11 dư 5. Tìm n
Nếu số tự nhiên n chia cho 11 dư 4 thì n2 chia cho 11 dư 5. Tìm n
Nếu số tự nhiên n chia cho 11 dư 4 thì n2 chia cho 11 dư 5. Tìm n
Câu 1: Chứng minh rằng nếu số tự nhiên n chia hết cho 11 dư 4 thì n2 chia hết cho 11 dư 5.
Câu 2: Chứng minh rằng nếu số tự nhiên n chia cho 13 dư 7 thì n2-10 chia hết cho 13.
Bg
C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))
=> n = 11k + 4 (với k \(\inℕ\))
=> n2 = (11k)2 + 88k + 42
=> n2 = (11k)2 + 88k + 16
Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5
=> n2 chia 11 dư 5
=> ĐPCM
C2: Ta có: n = 13x + 7 (với x \(\inℕ\))
=> n2 - 10 = (13x)2 + 14.13x + 72 - 10
=> n2 - 10 = (13x)2 + 14.13x + 39
Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13
=> n2 - 10 \(⋮\)13
=> ĐPCM
a) Tìm số tự nhiên nhỏ nhất sao cho chia nó cho 17 thì dư 4; chia nó cho19 thì dư 11
b)một số tự nhiên chia cho 7 thì dư 5, chia cho 11 dư 2.Nếu đem số đó chia cho 77 thì dư bao nhiêu
c)Tìm hai số nguyên sao cho tích của chúng bằng hiệu của chúng
bài 1. Tổng các số tự nhiên từ 1nđến 154 có chia hết cho 2 hay ko ? có chia hết cho 5 hay ko ?
bài 2. cho A = 119 + 118 + 117 + .....+ 11 + 1 . Chứng minh rằng A chia hết cho 5 .
bài 3. Chứng minh rằng vs mọi số tự nhiên n thì n2 + n + 6 ko chia hết cho 5 .
bài 4 . Trong các số tự nhiên nhỏ hơn 1000 , có bao nhiêu số chia hết cho 2 nhưng ko chia hết cho 5 ?
bài 5. Tìm các số tự nhiên chia cho 4 thì dư 1 , còn chia cho 25 thì dư 3 .
bài 6. Tìm các số tự nhiên chia cho 8 thì dư 3 , chia cho 125 thì dư 12 .
NHANH LÊN NHA TRONG NGÀY HÔM NAY MK CẦN GẤP , CẦN LẮM LUÔN M/N GIÚP MK NHA !!!!!!!!!!!!!!
bài 4
Các số chia hết cho 2 nhưng không chia hết cho 5 có tận cùng 2, 4, 6, 8 ; mỗi chục có bốn số đó.
Từ 0 đến 999 có 100 chục nên có :
4.100 = 400 (số).
Vậy trong các số tự nhiên nhỏ hơn 1000, có 400 số chia hết cho 2 nhưng ko chia hết cho 5
bài 5
Gọi thương của số tự nhiên x tuần tự là a và b
Theo đề, ta có:
x = 4a + 1
x = 25b + 3
<=> 4a + 1 = 25b + 3
4a = 25b + 2
a = (25b + 2)/4
b = 2 ; a = 13 <=> x = 53
b = 6 ; a = 38 <=> x = 153
b = 10 ; a = 63 <=> x = 253
b = 14 ; a = 88 <=> x = 353
b = 18 ; a = 113 <=> x = 453
Đáp số: Tất cả các số tự nhiên, tận cùng là 53 đều thoả mãn điều kiện.
MÌNH THẤY NGÀY 20/9/2017 NÊN CHẮC LÀ BẠN ĐÃ CÓ CÂU TRẢ LỜI
ÁC BẠN GIÚP MK NHA BIÊT CHỖ NÀO GIẢI CHỖ ĐÓ NHA NẾU KO BT THÌ KO CẦN GIẢI HẾT CX ĐC NHƯNG GIÚP MK NHA
Chứng minh rằng nếu số tụ nhiên n chia hết cho 11 dư 4 thì n2 chia hết cho 11 dư 5
n chia 11 dư 4 nên n đồng dư với 4
n2 đồng dư với 42
Tìm số tự nhiên n sao cho n chia cho 3 dư 1,chia cho 4 dư 2,chia cho 5 dư 3,chia cho 6 dư 4 và chia hết cho 11?
1. Tìm số tự nhiên n và chữ số a biết : 1+2+3+4+.......+n = aaa
2.Tìm số tự nhiên nhỏ nhất sao cho số đó chia cho 3 dư 1, chia cho 4 dư 2, chia cho 5 dư 3, chia cho 6 dư 4 và chia hết cho 11
1+3+3+...+n=aaa
=> n(n-1):2=a.111
=>n(n-1)=a.222=a.3.2.37
=> n(n+1)=a.6.37vì n(n+1) là 2 số tự nhiên liên típ = > a.6 và 37 là 2 số tự nhiên liên tiếp và a.6 chia hết cho 6 =>a.6=36<=>a=6=> n=36
vậy..............
?????????????????????????????????????????
1 : Số cặp số nguyên ( x ; y ) thỏa mãn : ( 3x - 5 )( y + 9 ) = 243 là ...........
2 : Số dư của 5^2013 khi chia cho 7 là : ............
3 : Khi chia 1 số tự nhiên cho 259 dư 150. Nếu lấy số đó chia cho 37 có số dư là : ............
4 : Tìm tất cả các số tự nhiên n để 4^n - 1 chia hết cho 7 là : ...........
5 : Số các số có 4 chữ số chia cho 5 dư 3, chia cho 7 dư 4, chia cho 11 dư 5 là : .............
1. Vì 143 có thể phân tích thành tích các stn = cách :143=11.13=1.143
Nên ta có bảng: x+1 1 143 11 13
2.y-5 143 1 13 11
x 0 142 10 12
y 74 3 9 8
rùi cậu tự ghi kết luận nha
tick cho mình nha!