Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
masterpro
Xem chi tiết
Trương Phúc Uyên Phương
Xem chi tiết
Nguyễn Quang Trung
3 tháng 1 2016 lúc 15:51

\(\Rightarrow C=1+\left[\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}-\frac{2x\sqrt{x}-\sqrt{x}+x}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}\right].\frac{x-\sqrt{x}}{2\sqrt{x}-1}\)

\(=1+\left[\frac{\left(2\sqrt{x}-1\right)\left(1+\sqrt{x}+x\right)-\left(2x\sqrt{x}-\sqrt{x}+x\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}\right].\frac{x-\sqrt{x}}{2\sqrt{x}-1}\)

\(=1+\left[\frac{2\sqrt{x}+2x+2x\sqrt{x}-1-\sqrt{x}-x-2x\sqrt{x}+\sqrt{x}-x}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}\right].\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)

\(=1+\left[\frac{2\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}\right].-\frac{\sqrt{x}\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\)

\(=1-\frac{\sqrt{x}}{1+\sqrt{x}+x}\) \(=\frac{1+\sqrt{x}+x-\sqrt{x}}{1+\sqrt{x}+x}=\frac{1+x}{1+\sqrt{x}+x}\)

trần thúy an
Xem chi tiết
An Cute
Xem chi tiết
Giao Khánh Linh
Xem chi tiết
Jenny Avery
Xem chi tiết
Huỳnh Trần Thảo Nguyên
Xem chi tiết
Huy Anh
Xem chi tiết
Despacito
26 tháng 11 2017 lúc 11:25

\(P=\frac{2x+2}{\sqrt{x}}+\frac{x\sqrt{x}+1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\)

\(P=\frac{2x+2}{\sqrt{x}}+\frac{\sqrt{x^3}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x^3}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(P=\frac{2x+2}{\sqrt{x}}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)\(-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(P=\frac{2x+2}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\)

\(P=\frac{2x+2-x+\sqrt{x}-1-x+\sqrt{x}-1}{\sqrt{x}}\)

\(P=\frac{2\sqrt{x}}{\sqrt{x}}\)

\(P=2\)

vậy  \(P=2\)

LuKenz
Xem chi tiết