Cho \(P=\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}\)
rút gọn P
giúp mình với mn
giúp mình bài này với: rút gọn biểu thức P=(\(\frac{1}{\sqrt{X}-\sqrt{X-1}}-\frac{X-3}{\sqrt{X-1}-\sqrt{2}}\)).(\(\frac{2}{\sqrt{2}-\sqrt{X}}-\frac{\sqrt{X}+\sqrt{2}}{\sqrt{2X}-X}\))
C = \(1+\left(\frac{2x+\sqrt{x}-1}{1-x}-\frac{2x\sqrt{x}-\sqrt{x}+x}{1-x\sqrt{x}}\right).\frac{x-\sqrt{x}}{2\sqrt{x}-1}\)
Rút gọn C
giúp mình với , tớ tick cho 3 l-i-k-e
\(\Rightarrow C=1+\left[\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}-\frac{2x\sqrt{x}-\sqrt{x}+x}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}\right].\frac{x-\sqrt{x}}{2\sqrt{x}-1}\)
\(=1+\left[\frac{\left(2\sqrt{x}-1\right)\left(1+\sqrt{x}+x\right)-\left(2x\sqrt{x}-\sqrt{x}+x\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}\right].\frac{x-\sqrt{x}}{2\sqrt{x}-1}\)
\(=1+\left[\frac{2\sqrt{x}+2x+2x\sqrt{x}-1-\sqrt{x}-x-2x\sqrt{x}+\sqrt{x}-x}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}\right].\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)
\(=1+\left[\frac{2\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}\right].-\frac{\sqrt{x}\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\)
\(=1-\frac{\sqrt{x}}{1+\sqrt{x}+x}\) \(=\frac{1+\sqrt{x}+x-\sqrt{x}}{1+\sqrt{x}+x}=\frac{1+x}{1+\sqrt{x}+x}\)
mn giúp mình với, thanks
Cho biểu thức: \(M=(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}):(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1})\).
a) Tìm điều kiện và rút gọn biểu thức M.
b) Tìm các giá trị của \(x\) để \(M>0\).
ĐKXĐ: \(x>0;x\ne1\)
\(a.M=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)
\(=\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\left\lbrack\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right\rbrack\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}:\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}\cdot\left(\sqrt{x}-1\right)\)
\(=\frac{x-1}{\sqrt{x}}\)
\(b.M>0\Leftrightarrow\frac{x-1}{\sqrt{x}}>0\)
\(\) \(\Rightarrow x-1>0\Rightarrow x>1\)
vậy x>1 thì M>0
rút gọn biểu thức b1=x/căn x-1 - 2x-căn x/x-căn x
rút gọn hộ mình với\(\frac{x}{\sqrt{x-1}}-\frac{2x-\sqrt{x}}{x-\sqrt{x}}\)A=\(\frac{\sqrt{x^3}}{\sqrt{xy}-2y}-\frac{2x}{x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}}.\frac{1-x}{1-\sqrt{x}}.\)
a) Rút gọn A
Giúp mik với mình đang cần gấp !! Thanks nhìu!!
rút gọn: \(P=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right)\times\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
Rút gọn biểu thức
\(P=\left(\frac{1}{1-\sqrt{x}}-\frac{1}{\sqrt{x}}\right):\left(\frac{2x+\sqrt{x}-1}{\sqrt{x}-x\sqrt{x}}+\frac{2x\sqrt{x}+x-\sqrt{x}}{\sqrt{x}+x^2}\right)\)
Rút gọn: P= \(\left(\frac{1}{1-\sqrt{2}}-\frac{1}{\sqrt{x}}\right):\left(\frac{2x+\sqrt{x}-1}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\)
Cho P=\(\frac{2x+2}{\sqrt{x}}+\frac{x\sqrt{x}+1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\)
Rút gọn biểu thức P
\(P=\frac{2x+2}{\sqrt{x}}+\frac{x\sqrt{x}+1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\)
\(P=\frac{2x+2}{\sqrt{x}}+\frac{\sqrt{x^3}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x^3}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(P=\frac{2x+2}{\sqrt{x}}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)\(-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(P=\frac{2x+2}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\)
\(P=\frac{2x+2-x+\sqrt{x}-1-x+\sqrt{x}-1}{\sqrt{x}}\)
\(P=\frac{2\sqrt{x}}{\sqrt{x}}\)
\(P=2\)
vậy \(P=2\)