cho x+y+z=can x+can y+can z=2. tinh p
cho xy+yz+zx=1 tinh tong x*can((1+y^2)(1+z^2)/(1+x^2))+y*can((1+x^2)(1+z^2)/(1+y^2))+z*can((1+y^2)(1+x^2)/(1+z^2))
Cho x+y+z=can x+can y+can z=2. tinh pim a,b biet 3/(a+bxcan 3)_2/(a_b xcan3)=7_20x can 3
Ở đây em chỉ lp 7 thoy à
Nhưng mà em chỉ cho nhé
Qua hok 24 thì có thầy giải cho
tk nha
tim z,y,z thoa
can x cong can tat ca y tru 1 cong can tat ca z tru 2 bang 1 phan 2 ( x cong y cong z)
tim GTN cua B bang 1 phan x tru can x cong 1
tim x thuoc z de can x cong 1 phan can 3 tru 3 la so nguyen
tinh tong T bang 1 phan can 1 cong can 2 cong 1 phan can 2 cong can 3 cong ... cong den 1 phan can 99 cong can 100
cho ba so thuc khong am x,y,z thoa man x+y+z=3 Tinh GTNN cua A=can(2x^2+3xy+2y^2)+can(2y^2+3yz+2z^2)+can(2z^2+3zx+2x^2)
cho x,y,z thoa man 2/x+y + 2/y+z + 2/z+x = 1007x/x+y +1007y/y+z +1007z/z+x .
tinh S=a+b+c
giai nhanh nha can gap
x+y+z=1007/2=503.5
bạn chuyển vế đổi dấu mới dc như thế nhé
Cho x,y,z la 3 so khong dong thoi bang nhau
CMR can x + 1/can y = can y +1/can z= can z +1/can x
thi xyz=1
Cho cac so duong x, y,z thoa man x+y+z=3. Tim GTLN cua P= can bac hai cua (x+y) + can bac hai cua (y+z) + can bac hai cu(x+z)
Ta có : \(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}=1.\sqrt{x+y}+1.\sqrt{y+z}+1.\sqrt{z+x}\)
\(\Rightarrow\left(1.\sqrt{x+y}+1.\sqrt{y+z}+1.\sqrt{z+x}\right)^2\le\left(1^2+1^2+1^2\right)\left(x+y+y+z+z+x\right)=3.2\left(x+y+z\right)=18\)
(Áp dụng bất đẳng thức Bunhiacopxki)
Vậy : Max P = \(3\sqrt{2}\Leftrightarrow\hept{\begin{cases}x+y+z=3\\\sqrt{x+y}=\sqrt{y+z}=\sqrt{z+x}\end{cases}\Leftrightarrow x=y=z=1}\)
áp dụng bất đẳng thức Cô-si cho 2 số dương, ta có:
\(\sqrt{x+y}\)< hoặc =\(\frac{x+y}{2}\)
\(\sqrt{y+z}\)< hoặc =\(\frac{y+z}{2}\)
\(\sqrt{x+z}\)< hoặc =\(\frac{x+z}{2}\)
=>\(\sqrt{x+y}+\sqrt{y+z}+\sqrt{x+z}\)< hoặc =\(\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}=x+y+z=3\)
dấu = xảy ra<=>x=y=z
Vậy GTLN của biểu thúc là 3 khi x=y=z
cho 1/x +1/y +1/z=1. chứng minh; căn của (x+yz) + can của (y+xz) +can của (z+xy) lớn hơn hoặc bằng can của xyz+ căn x+ căn y + can z
cho |\(\frac{1}{2}\)+x|+|x-y+z|+|\(\frac{1}{3}\)+y|=0
tinh A=2x+y+z
help me dang can!
Ta có: \(\left|\frac{1}{2}+x\right|\ge0;\left|x-y+z\right|\ge0;\left|\frac{1}{3}+y\right|\ge0\)
\(\Rightarrow\left|\frac{1}{2}+x\right|+\left|x-y+z\right|+\left|\frac{1}{3}+y\right|\ge0\)
Mà \(\left|\frac{1}{2}+x\right|+\left|x-y+z\right|+\left|\frac{1}{3}+y\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|\frac{1}{2}+x\right|=0\\\left|x-y+z\right|=0\\\left|\frac{1}{3}+y\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-1}{2}\\z=\frac{1}{6}\\y=-\frac{1}{3}\end{cases}}}\)
\(\Rightarrow A=2\cdot\left(\frac{-1}{2}\right)+\left(\frac{-1}{3}\right)+\frac{1}{6}=-1-\frac{1}{3}+\frac{1}{6}=\frac{-1}{2}\)