Tính:
\(\frac{1}{56}+\frac{56}{21}\)
Tính nhanh: \(\left(\frac{1}{11\times16}\right)+\left(\frac{1}{16\times21}\right)+\left(\frac{1}{21\times26}\right)+...+\left(\frac{1}{56\times61}\right)+\left(\frac{1}{61\times66}\right)\)
\(\frac{1}{11\times16}+\frac{1}{16\times21}+\frac{1}{21\times26}+...+\frac{1}{56\times61}+\frac{1}{61\times66}\)
\(=\frac{1}{5}\times\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{56}-\frac{1}{61}+\frac{1}{61}-\frac{1}{66}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(=\frac{1}{5}\times\frac{5}{66}\)
\(=\frac{1}{66}\)
\(\frac{1}{11\times16}+\frac{1}{16\times21}+\frac{1}{21\times26}+...+\frac{1}{56\times61}+\frac{1}{61\times66}\)
\(=\frac{1}{5}\times\left(\frac{5}{11\times16}+\frac{5}{16\times21}+\frac{5}{21\times26}+...+\frac{5}{56\times61}+\frac{5}{61\times66}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{56}-\frac{1}{61}+\frac{1}{61}-\frac{1}{66}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(=\frac{1}{5}\times\frac{5}{66}=\frac{1}{66}\)
\(\frac{1}{11.16}+\frac{1}{16.21}+\frac{1}{21.26}+...+\frac{1}{61.66}\)
\(=\frac{1}{5}.\left(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\right)\)
\(=\frac{1}{5}.\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\right)\)
\(=\frac{1}{5}.\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(=\frac{1}{5}.\frac{5}{66}\)
\(=\frac{1}{66}\)
thục hiện dãy tính :
\(\frac{\frac{3}{67}.\left(17\frac{21}{56}-13\frac{21}{45}\right):\left(\frac{3}{5.22}+\frac{54}{44.65}+\frac{18}{65.72}\right)}{29^3:100-29^3:0,47}\)
help me
\(\frac{\frac{3}{67}.\left(17\frac{21}{56}-13\frac{21}{45}\right):\left(\frac{3}{5.22}+\frac{54}{44.65}+\frac{18}{65.72}\right)}{29^3:100-29^3:0,47}\)
\(=\frac{\frac{3}{67}\left(\frac{139}{8}-\frac{202}{15}\right):\left(\frac{3}{110}+\frac{54}{2860}+\frac{18}{4680}\right)}{29^3.\frac{1}{100}-29^3.\frac{47}{100}}\)
\(=\frac{\frac{3}{67}.\frac{469}{120}:\frac{1}{20}}{29^3\left(\frac{1}{100}-\frac{47}{100}\right)}\)
\(=\frac{\frac{7}{40}.20}{29^3.\left(-\frac{23}{50}\right)}\).
\(=\frac{\frac{7}{2}}{-11218,94}\)
\(=-\frac{175}{560947}\)
arigato gozaimasu
tính :\(\frac{3}{2}+\frac{7}{6}+\frac{13}{12}+\frac{21}{20}+\frac{31}{30}+\frac{43}{42}+\frac{57}{56}+\frac{73}{72}+\frac{91}{90}\)
= \(\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{6}\right)+\left(1+\frac{1}{12}\right)+....+\left(1+\frac{1}{90}\right)\)
= \(\left(1+1+1+....+1\right)+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{90}\right)\)(9 số 1)
= 9 + \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}\right)\)
= \(9+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
= \(9+\left(1-\frac{1}{10}\right)=9+\frac{9}{10}=\frac{90}{10}+\frac{9}{10}=\frac{99}{10}\)
3/2+7/6+13/12+21/20+31/30+43/42+57/56+73/72+91/90=99/10=9,9
Tìm x thuộc N*, biết rằng
\(\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+...+\frac{1}{n^2+4n}=\frac{56}{673}\)
cái này là toán mà bạn, đâu phải vật lý
a, A =\(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
b, B=\(\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
Tính giá trị của A và B
a) \(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(A=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(A=2\cdot\left(\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{15\cdot16}\right)\)
\(A=2\cdot\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(A=2\cdot\left(\frac{1}{4}-\frac{1}{16}\right)=2\cdot\frac{3}{16}=\frac{3}{8}\)
b) \(B=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(B=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(B=\frac{5}{3}\cdot\left(\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+...+\frac{3}{25\cdot28}\right)\)
\(B=\frac{5}{3}\cdot\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(B=\frac{5}{3}\cdot\left(\frac{1}{4}-\frac{1}{28}\right)=\frac{5}{3}\cdot\frac{3}{14}=\frac{5}{14}\)
Tính BCNN\(\left(\frac{16}{21},\frac{56}{27}\right)\)(Trình bày rõ => tick )
Thực hiện tính giải bằng cách hợp lý:
\(A=\frac{\frac{3}{67}.\left(17\frac{21}{56}-13\frac{21}{45}\right):\left(\frac{3}{5.22}+\frac{54}{44.65}+\frac{18}{65.72}\right)}{29^3:100-29^3:0,47}\)
Tìm n thuộc N* biết rằng:\(\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+...+\frac{1}{n^2+1n}=\frac{56}{673}\)
Tính:
\(\left(2\frac{1}{47}-9\frac{3}{56}+7\frac{6}{121}\right):\left(\frac{5}{47}-\frac{15}{56}+\frac{30}{121}\right)\)