Tìm ba số nguyên dương biết: a.b.c=a+b+c
Tìm các số nguyên dương a, b, c sao cho: a.b.c = a+b+c
tìm tất cả các bộ số nguyên dương (a,b,c) thỏa mãn: a.b.c=a+b+c+9
Trong ba số nguyên a.b.c có một số dương, một số âm, một số 0 thõa mãn đều kiện sau:
|a|= b2 ( b - c). Hỏi số nào dương, số nào âm, số nào bằng 0
tích a.b.c là số nguyên âm trong đó a là số nguyên dương b là số nguyên am thì c là số nguyên dương
cho mình hỏi bao giờ thời sự tập cuối
cái này là toán hả bn
Tìm tất cả bộ ba số nguyên tớ a, b , c sao cho a.b.c < a.b + b.c + c.a
Giả sử : \(2\le c\le b\le a\) (1)
Lại có : a.b.c < a.b + b.c + c.a \(\Rightarrow1< \frac{1}{c}+\frac{1}{b}+\frac{1}{a}\) (2)
Từ (1) ta có: \(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\le\frac{3}{c}\Rightarrow1< \frac{3}{c}\Rightarrow c< 3\Leftrightarrow c=2\)
Thay c = 2 vào (2) ta được :
\(\frac{1}{2}< \frac{1}{a}+\frac{1}{b}\le\frac{2}{b}\Rightarrow b\le4\Leftrightarrow\orbr{\begin{cases}b=2\\b=3\end{cases}}\)
- Với b = 2 , ta có : \(\frac{1}{2}< \frac{1}{a}+\frac{1}{2}\Rightarrow\frac{1}{2}>0\)(đúng với mọi số nguyên tố a)
- Với b = 3 , ta có : \(\frac{1}{2}< \frac{1}{a}+\frac{1}{3}\Rightarrow\frac{1}{a}>\frac{1}{6}\Rightarrow a< 6\Leftrightarrow\orbr{\begin{cases}a=3\\a=5\end{cases}}\)
Vậy (a;b;c) = (5;3;2) ; (3;3;2) ; (2;2;a) (a là số nguyên tố bất kì)
Giả sử a≤b≤c⇒ab+bc+ca≤3bca≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+caabc<ab+bc+ca (1) nên abc<3bc⇒a<3abc<3bc⇒a<3 mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c)2bc<2b+2c+bc⇒bc<2(b+c) (2)
Vì b≤c⇒bc<4c⇒b<4b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5
Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý
Vì a, b, c có vai trũ như nhau nên giả sử a ≤ b ≤ c khi đó
( Vì a là số nguyên tố )
Với a = 2 ta có
- Nếu b = 2 thì 4c < 2 + 4c thoả món với c là nguyên tố bất kỡ
- Nếu b = 3 thì 6c < 6b + 5c suy ra c < 6 vậy c = 3 hoặc c = 5
Vậy các cạp số (a, b, c) càn Tìm là (2, 2, p) ; (2, 3, 3 ) ; (2, 3, 5 ) và các hoán vị vủa chúng , với p là số nguyên tố .
Tìm ba số nguyên tố a,b,c khác nhau sao cho
a.b.c<a.b+a.c+b.c
Tìm tất cả các bộ ba số nguyên tố a, b, c sao cho a.b.c<a.b+b.c+c.a.
Giả sử \(2\le c\le b\le a\) (1)
Từ abc < ab + bc + ca chia 2 vế cho abc ta được :
\(1< \frac{1}{c}+\frac{1}{b}+\frac{1}{a}\) (2)
Từ (1) ta có :
\(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\le\frac{3}{c}\) nên \(1< \frac{3}{c}\Rightarrow c< 3\Rightarrow c=2\)
Thay c = 2 vào (2) ta có :
\(\frac{1}{2}< \frac{1}{a}+\frac{1}{b}\le\frac{2}{b}\Rightarrow b\le4\)
Vì b là số nguyên tố nên \(\orbr{\begin{cases}b=2\\b=3\end{cases}}\)
Với \(b=2\Rightarrow\frac{1}{2}< \frac{1}{a}+\frac{1}{2}\Rightarrow\frac{1}{a}>0\) đúng với mọi số nguyên tố a
Với \(b=3\Rightarrow\frac{1}{2}< \frac{1}{a}+\frac{1}{3}\Rightarrow\frac{1}{a}>\frac{1}{6}\Rightarrow a< 6\)
Mà a là số nguyên tố nên \(\orbr{\begin{cases}a=3\\a=5\end{cases}}\)
Vậy ( a ; b ; c ) = ( 5 ; 3 ; 2 ) ; ( 3 ; 3 ; 2 ) ; ( a ; 2 ; 2 ) với a là số nguyên tố bất kì
KHông mất tính tổng quát: g/s: \(a\ge b\ge c\)
=> \(ab+bc+ac\le ab+ba+ab=3ab\)
Theo đề bài: \(abc< ab+bc+ac\)
=> \(abc< 3ab\Leftrightarrow c< 3\)
mà c là số nguyên tố => c = 2
=> \(2ab< ab+2b+2a\)
=> \(ab< 2\left(a+b\right)\)mặt khác \(a\ge b\)
=> \(ab< 2\left(a+a\right)\Leftrightarrow ab< 4a\Leftrightarrow b< 4\)
Ta có b là số nguyên tố => b = 2 hoặc b = 3
Với b = 2 => \(4a< 2a+4+2a\)=> 0 < 4 luôn đúng với mọi a
Với b = 3 => \(6a< 3a+6+2a\)=> a < 6 . Vì a là số nguyên tố lớn hơn hoặc bằng b => a = 3 hoặc a = 5
Vậy có các bộ số : ( a; 2; 2) với a nguyên tố bất kì; ( 3; 3; 2) ; ( 5; 3; 2) Và các hoán vị
Tìm ba số a.b.c biết a/3 =b/2=c/5 và a-b+c =10,2
Từ a/3 = b/2 = c/5 và a - b + c = 10,2
ADTCDTSBN , ta có:
a/3 = b/2 = c/5 = a-b+c/3-2+5 = 10,2/6 = 1,7
Vì a/3 = 1,7 => 1,7 .3 = 5,1
b/2 = 1,7 => 1,7 . 2 = 3,4
c/5 = 1,7 => 1,7 . 5 = 8,5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{3}=\frac{b}{2}=\frac{c}{5}=\frac{a-b+c}{3-2+5}=\frac{10,2}{6}=1,7\)
\(\frac{a}{3}=1,7\Rightarrow a=1,7.3=5,1\)
\(\frac{b}{2}=1,7\Rightarrow b=1,7.2=3,4\)
\(\frac{c}{5}=1,7\Rightarrow c=1,7.5=8,5\)
Ap dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{2}=\frac{c}{5}=\frac{a-b+c}{3-2+5}=\frac{102}{6}=17\)
suy ra: \(\hept{\begin{cases}\frac{a}{3}=17\\\frac{b}{2}=17\\\frac{c}{5}=17\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=51\\b=34\\c=85\end{cases}}\)
Vậy \(a=51;\) \(b=34;\) \(c=85.\)
Tìm các số nguyên a,b,c thỏa mãn đẳng thức : a.b.c + a = 1333 ; a.b.c + b = 1335 ; a.b.c + c = 1341