Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phương Nga
Xem chi tiết
Khánh Đỗ
Xem chi tiết
Cô gái lạnh lùng
Xem chi tiết
Tú Lê Anh
23 tháng 3 2018 lúc 21:14

1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)

\(36x+20-4n^2+4n\)

\(\Rightarrow36x+21=4n^2+4n+1\)

\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)

\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)chia hết cho 9

Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9

Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)

Tú Lê Anh
23 tháng 3 2018 lúc 21:22

2) Ta có: xy + 3x - y = 6 =>x(y+3) - y = 6 

=>x(y+3) - y - 3 = 3 =>x(y+3) - (y+3) = 3

=> (y+3)(x-1) =3

Vì x, y là các số nguyên nên y+3;x-1 là các số nguyên

Ta có bảng sau:

y+3-3 -1 13
y-6-4-20
x-1-1-331
x0-242
Lê Kiều Uyên
Xem chi tiết
Nguyễn Thị Hồng Điệp
Xem chi tiết
Đinh Đức Hùng
26 tháng 2 2017 lúc 12:22

Sủa lại đề nha : \(\left|\left(3x+4\right)^2+\left|y-5\right|\right|=1\)

Vì \(\left(3x+4\right)^2\ge0\) ; \(\left|y-5\right|\ge0\)

\(\Rightarrow\left(3x+4\right)^2+\left|y-5\right|\ge0\)

\(\Rightarrow\left|\left(3x+4\right)^2+\left|y-5\right|\right|=\left(3x+4\right)^2+\left|y-5\right|\)

\(\Rightarrow\left(3x+4\right)^2+\left|y-5\right|=1=0+1=1+0\)

Nếu \(\left(3x+4\right)^2=0\) thì \(\left|y-5\right|=1\) => \(x=-\frac{4}{3}\) thì \(y=4;6\)

Nếu \(\left(3x+4\right)^2=1\) thì \(\left|y+5\right|=0\) =? \(x=-\frac{5}{3};-1\) thì y = \(-5\)

=> cặp ( x;y ) thỏa mãn đề bài là ( -4/3; 4 ); (-4/3;6) ; (-5/3;-5) ; (-1;5)

Mà x ; y nguyên => ( x;y ) = ( -1;5 )

Vậy có 1 cặp (x;y) thỏa mãn

Phạm Thị Thu Liên
26 tháng 2 2018 lúc 9:56

Đáp án đúng là 1 đó bạn . Mk làm rùi

Thư Đặng
Xem chi tiết
Trần Việt Linh
13 tháng 12 2016 lúc 18:40

CÓ:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)=-\frac{1}{z^3}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}-\frac{3}{xyz}=-\frac{1}{z^3}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

\(A=\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz\cdot\frac{3}{xyz}=3\)

Nguyễn Trang Quyên
Xem chi tiết
Fair-play Football
Xem chi tiết
My Love
Xem chi tiết