cho A= 1+2^2 + 2^3+ 2^4+2^5 + …+ 2^ 96+2^97 + 2^98
chứng minh chí hết cho 7
cho A= 1+7+7^2+7^3+...+7^98
chứng minh rằng A chia hết cho7. Chứng minh 6A+1 là một lũy thừa của 7
Chứng minh rằng : A=1×98+2×97+3×96+. . . . .+96×3+97×2+98×1/1×2+2×3+3×4+. . . . .+96×97+97×98+98×99=1/2
Ai giải ra nhanh và sớm nhất mk sẽ tk cho 5 tk lun
Thank you very good!
Bạn tìm ở link này nha: https://olm.vn/hoi-dap/tim-kiem?q=+Ch%E1%BB%A9ng+minh+r%E1%BA%B1ng+1.98+2.97+3.96+...+96.3+97.2+98.11.2+2.3+3.4+...+96.97+97.98+98.99+=1/2+&id=517786
Chứng minh rằng:
a, 942^60 - 351^37 chia hết cho 5
b, 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5
Chứng minh rằng:
Câu a: 942^60-351^37 chia hết cho 5
Câu b: 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5
Chứng minh rằng 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5
Tìm số đuôi của tất các số trên nhân thử vào:
9 x 9 x 9 x 9 x 9 = đuôi 9
4 x 4 x 4 x 4 = đuôi 6
.......
9 - 6 + 3 - 6 = 0
Suy ra chia hết cho cả 2 và 5 thôi
Ta có: 995=992.2+1=(992)2.99=(...1)2.99=(....1)2.99=(.....9)
Ta có: 984=(...6)
Ta có: 973=972+1=972.97=(...9).97=(.....3)
Ta có: 962=(....6)
Do đó: 995-984+973-962=(....9)-(....6)+(....3)-(....6)=(......0) chia hết cho 2 và 5 (đpcm)
chứng minh rằng
a, 942^60-351^37 chia hết cho 5
b,99^5-98^4+97^3-96^2 chia hết cho 2 và 5
1. Tìm n thuộc N để:
a. n+8 chia hết cho n
b. 3n+7 chia hết cho n
c. 5n+9 chia hết cho n+1
2. Chứng minh rằng:
a) \(942^{60}-351^{37}\)chia hết cho 5
b)\(99^5-98^4+97^3-96^2\)chia hết cho 2 và 5
Bài 1:
a,Ta có:\(\dfrac{n+8}{n}=1+\dfrac{8}{n}\)
Để \(n+8⋮n\) thì \(8⋮n\)
\(\Rightarrow n\in\left\{1;2;4;8\right\}\)
Vậy.....
b.c tương tự
Bài 2:
a.\(942^{60}-351^5=\left(.......6\right)-\left(..........1\right)=\left(.......5\right)⋮5\)
Do đó:\(942^{60}-351^{37}⋮5\left(dpcm\right)\)
b,\(99^5-98^4+97^3-96^2\\ =\left(.....9\right)-\left(....6\right)+\left(..........3\right)-\left(..........6\right)=\left(...........0\right)⋮10\)
Do đó:\(99^5-98^4+97^3-96^2⋮2;5\left(dpcm\right)\)
chứng minh rằng :
a) 942 mũ 60 - 351 mũ 37 chia hết cho 5
b) 99 mũ 5 - 98 mũ 4 + 97 mũ 3 - 96 mũ 2 chia hết cho 2 và 5
a = 2 + 2 mũ 2 + chấm chấm chấm + 2 mũ 39 chia hết cho 35
chứng minh rằng :
a) 942 mũ 60 - 351 mũ 37 chia hết cho 5
b) 99 mũ 5 - 98 mũ 4 + 97 mũ 3 - 96 mũ 2 chia hết cho 2 và 5
a, 942^60-351^37
=(942^4)^15-351^37
=(....6)^15 -351^37
suy ra( 942^4)^15 có tận cùng là 6
357^37 có tận cùng là 1
hiệu của 942^60-351^37 có tận cùng là 5
suy ra 942^60-351^37 chia hết cho 5
a) Ta có: 942^60=(942^4)^15=...6^15=...6
351^37=...1
Suy ra: 942^60-351^37=...5 chia hết cho 5. Vậy 942^60-351^37 chia hết cho 5
b) Làm tương tự câu trên
a) Ta có : 94260-35137=(9424)15-35137=(...6)15-35137=(...6)-(...1)=(...5)
vì (...5) có tận cùng là 5
=> (...5) chia hết cho 5
b) Ta có : 995=(994)(991)=(...1).(...9)=(....9)
984=(...6)
973=972.97=(...9)(..7)=(..3)
962=(....6)
=> (...9)-(...6)+(...3)-(...6)=(...0)
Vây (....0) chia hết cho cả 2 và 5