b. Tìm số nguyên tố p sao cho p + 6, p + 14, p + 12 và p + 8 đều là các số nguyên tố.
Tìm số nguyên tố p sao cho:
p+10 và p+14 đều là số nguyên tố
p+6,p+8,p+12 và p+14 đều là số nguyên tố
Tìm các số nguyên tố P sao cho sao cho các số sau đều là số nguyên tố:
a, P+10 và P+14
b, P+8 và P+10
c, P+2, P+8, P+12, P+14
d, P+6, P+8, P+12, P+14
xét p = 2 =>p+10 là hợp số =>ko tm
xét p = 3=>p+10=13,p+14=17 tm
xét p>3 => p=3k+1,p=3k+2
- nếu p = 3k+1 thì p+14 = 3k+15 chia hết cho 3 mà 3k+1>3=>p=3k+1 ko tm
- nếu p=3k+2 thì p+10 = 3k+12 chia hết cho 3 mà 3k+2>3=>p=3k+2 ko tm
a) P+10 và P+14
+ Nếu P=2=> P+10=12; P+14=16(loại)
- Nếu P=3=> P+10=13; P+14=17(tm)
Nếu P>3=> P có dạng 3k;3k+1;3k+2
+Với P=3k mà P>3=> k>1=> P là hợp số ( loại)
+Với P=3k+1=> P+14=3k+1+14=3k+15 chia hết cho 3( loại)
+Với P=3k+2=> P+10=3k+2+10=3k+12 chia hết cho 3( loại)
Vậy với P=3 thì P+10 và P+14 là số nguyên tố.
Các phần còn lại bn làm tương tự
Thấy đúng thì tk nha, thanks nhìu ^_^
Tìm số nguyên tố P sao cho P+6 ; P+8 ; P +12 và P +14 đều là số nguyên tố
Lời giải:
Nếu $p$ là snt chia hết cho $5$ thì $p=5$. Khi đó $p+6. p+8, p+12, p+14$ đều là snt (thỏa mãn)
Nếu $p$ chia $5$ dư $1$. Đặt $p=5k+1$ với $k$ tự nhiên.
Khi đó $p+14=5k+15=5(k+3)\vdots 5$. mà $p+14>5$ nên không thể là snt (trái giả thiết - loại)
Nếu $p$ chia $5$ dư $2$. Đặt $p=5k+2$ với $k$ tự nhiên.
Khi đó $p+8=5k+10=5(k+2)\vdots 5$. mà $p+8>5$ nên không thể là snt (trái giả thiết - loại)
Nếu $p$ chia $5$ dư $3$. Đặt $p=5k+3$ với $k$ tự nhiên.
Khi đó $p+12=5k+15=5(k+3)\vdots 5$. mà $p+12>5$ nên không thể là snt (trái giả thiết - loại)
Nếu $p$ chia $5$ dư $4$. Đặt $p=5k+4$ với $k$ tự nhiên.
Khi đó $p+6=5k+10=5(k+2)\vdots 5$. mà $p+6>5$ nên không thể là snt (trái giả thiết - loại)
Vậy $p=5$ là đáp án duy nhất.
Tìm số nguyên tố p sao cho:
a, p+10 và p+14 đều là các số nguyên tố.
b, p+10 và p+20 đều là các số nguyên tố.
c, p+2 ; p+6 ; p+8 và p+14 đều là các số nguyên tố.
ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc
tìm số nguyên tố p sao cho
a) p+10 và p+20 đều là các số nguyên tố
B) p+2; p+6; p+8; p+14 đều là các số nguyên tố
Xin lỗi tớ chỉ trả lời đucợ phần a mà cx ko biết có đúng không nhưng tớ học dạng này rồi
a)
+ Nếu p = 2 thì p + 10 = 12 là hợp số
p + 20 = 22 là hợp số
\(\Rightarrow\)Loại
+ Nếu p = 3 thì p + 10 = 13 là Số nguyên tố
p + 20 = 23 là số nguyên tố
\(\Rightarrow\) Chọn
+ Nếu p > 3 thì p có dạng 3k + 1; 3k +2 ( k \(\in\)N* )
- Với p = 3k + 1 thì p + 20 = 3k +1 + 20 = 3k+21. Mà 21 \(⋮\)3 \(\Rightarrow\)21 là hợp số
- Với p = 3k +2 thì p + 10 = 3k + 2 + 10 = 3k + 12. Mà 12 \(⋮\)2,6,3,4 \(\Rightarrow\)12 là hợp số
\(\Rightarrow\) Loại
Vậy, p = 3
Bài tập : Tìm số nguyên tố p sao cho :
a, p + 10 và p + 20 đều là số nguyên tố
b, p + 2 ; p + 6 ; p + 8 ; p + 14 đều là các số nguyên tố
a, Ta có: p = 2 => p + 10 = 12 là hợp số
p = 3 => p + 10 = 13
p + 20 = 23
Vậy p = 3 thỏa mãn yêu cầu
Giả sử p > 3 thì p sẽ có dạng:
p = 3k + 1 hoặc p = 3k + 2
Với p = 3k + 1 thì p + 20 = 3k + 1 + 20 = 3k + 21 \(⋮\)3
=> p + 20 là hợp số
Với p = 3k + 2 thì p + 10 = 3k + 2 + 10 = 3k + 12 \(⋮\)3
=> p + 10 là hợp số
Do đó: với p = 3 thỏa mãn yêu cầu đề bài
b, Ta có: p = 2 => p + 2 = 4 là hợp số
p = 3 => p + 6 = 9 là hợp số
p = 5 => p + 2 = 7
p + 6 = 11
p + 8 = 13
p + 14 = 19
Vậy p = 5 thỏa mãn
Giả sử p > 5 thì p sẽ có dạng:
p = 5k + 1; p = 5k + 2; p = 5k + 3; p = 5k + 4
Với p = 5k + 1 thì: p + 14 = 5k + 1 + 14 = 5k + 15 \(⋮\)5
=> p + 14 là hợp số
Với p = 5k + 2 thì: p + 8 = 5k + 2 + 8 = 5k + 10 \(⋮\)5
=> p + 8 là hợp số
Với p = 5k + 3 thì: p + 2 = 5k + 3 + 2 = 5k + 5 \(⋮\)5
=> p + 2 là hợp số
Với p = 5k + 4 thì: p + 6 = 5k + 4 + 6 = 5k + 10 \(⋮\)5
=> p + 6 là hợp số
Do đó: với p = 5 thỏa mãn yêu cầu bài toán
Tìm số p nguyên tố sao cho p+6; p+8; p+12; p+14 đều là số nguyên tố
Ở đây có 5 số đều là số nguyên tố: p, p+6, p + 8, p+12, p+14. Ta thử làm phép chia cho 5 xem số dư của chúng là bao nhiêu?
Viết lại 5 số như sau:
p ; p + 5 + 1; p + 5 + 3; p + 10 + 2; p + 10 + 4
=> Trong 5 số trên bao giờ cũng có 1 số chia hết cho 5, 1 số chia cho 5 dư 1; 1 số chia 5 dư 2; 1 số chia 5 dư 3; 1 số chia 5 dư 4.
=> Vậy để chúng đều là số nguyên tố thì p = 5 (vì số 5 là số chia hết cho 5 duy nhất và là số nguyên tố).
Khi đó 5 số trong đầu bài là:
5; 5 + 5 + 1 = 11; 5 + 5 + 3 = 13; 5 + 10 + 2 = 17; 5 + 10 + 4 = 19
đều là số nguyên tố
Tìm số nguyên tố p sao cho p+6 ; p+8 ; p+12 ; p+14 đều là số nguyên tố .
Ở đây có 5 số đều là số nguyên tố: p, p+6, p + 8, p+12, p+14. Ta thử làm phép chia cho 5 xem số dư của chúng là bao nhiêu?
Viết lại 5 số như sau:
p ; p + 5 + 1; p + 5 + 3; p + 10 + 2; p + 10 + 4
=> Trong 5 số trên bao giờ cũng có 1 số chia hết cho 5, 1 số chia cho 5 dư 1; 1 số chia 5 dư 2; 1 số chia 5 dư 3; 1 số chia 5 dư 4.
=> Vậy để chúng đều là số nguyên tố thì p = 5 (vì số 5 là số chia hết cho 5 duy nhất và là số nguyên tố).
Khi đó 5 số trong đầu bài là:
5; 5 + 5 + 1 = 11; 5 + 5 + 3 = 13; 5 + 10 + 2 = 17; 5 + 10 + 4 = 19
đều là số nguyên tố
Tìm số nguyên tố p sao cho:
p+10 và p+14 đều là số nguyên tố
p+6,p+8 và p+14 đều là số nguyên tố
vi p la so nguyen to
đặt p = có dạng 3k, 3k+1, 3k+2
Thay vào
+>p+10=3k+10
p+14=3k+14(chọn)
+>p+10=3k+1+10=3k+11
p+14=3k+1+14=3k+15=>loại
+>p+10=3k+2+10=3k+12=>loại
Từ các bt trên suy ra snt cần tìm là 3
Các câu sau làm tuong tu