Tìm các số nguyên a,b sao cho \(\frac{^{a^2}}{a^2b^2+1}\)+\(\frac{b^2}{a^2b^2+1}\)=\(\frac{1}{a^2}\)+\(\frac{1}{b^2}\)
Tìm các số nguyên a,b sao cho \(\frac{a^2}{a^2b^2+1}+\frac{b^2}{a^2b^2+1}=\frac{1}{a^2}+\frac{1}{b^2}\)
\(\frac{a^2}{a^2b^2+1}+\frac{b^2}{a^2b^2+1}=\frac{1}{a^2}+\frac{1}{b^2}\)
\(\Leftrightarrow\frac{a^2+b^2}{a^2b^2+1}=\frac{a^2+b^2}{a^2b^2}\)\(\Leftrightarrow a^2b^2\left(a^2+b^2\right)=\left(a^2+b^2\right)\left(a^2b^2+1\right)\)
\(\Leftrightarrow\left(a^2+b^2\right)\left(a^2b^2-a^2b^2-1\right)=0\)
\(\Leftrightarrow a^2+b^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}\)
Cho biểu thức:
P= \(\frac{a^2}{\left(a+b\right)\left(1-b\right)}-\frac{b^2}{\left(a+b\right)\left(1+a\right)}-\frac{a^2b^2}{\left(1+a\right)\left(1-b\right)}\)
a) Rút gọn P
b) Tìm cặp số nguyên (a;b) sao cho P=3
a) Điều kiện : \(a\ne-b;b\ne1;a\ne-1\)
\(P=\frac{a^2\left(1+a\right)-b^2\left(1-b\right)-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{a^3+a^2+b^3-b^2-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a+b\right)\left(a-b\right)-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{\left(a+b\right)\left(a^2-ab+b^2+a-b-a^2b^2\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{a^2+b^2-a^2b^2+a-b-ab}{\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{a^2\left(1-b^2\right)-\left(1-b^2\right)+a\left(1-b\right)+\left(1-b\right)}{\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{\left(1-b\right)\left(a^2+a^2b-1-b+a+1\right)}{\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{a^2+a^2b+a-b}{1+a}\)
\(P=\frac{a\left(a+1\right)+b\left(a-1\right)\left(a+1\right)}{1+a}\)
\(P=\frac{\left(a+1\right)\left(a+ab-b\right)}{1+a}\)
P = a + ab - b
b)
P = 3
<=> a + ab - b = 3
<=> a(b+1) - (b+1) +1 - 3 = 0
<=> (b+1)(a-1) = 2
Ta có bảng sau với a, b nguyên
b+1 | 1 | 2 | -1 | -2 |
a-1 | 2 | 1 | -2 | -1 |
b | 0 | 1 | -2 | -3 |
a | 3 | 2 | -1 | 0 |
so với đk | loại | loại |
Vậy (a;b) \(\in\){ (3; 0) ; (0; -3)}
Cho a, b, c \(\ne\)0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=0\). Tính : \(E=\frac{a^2b^2c^2}{a^2b^2+b^2c^2-a^2c^2}+\frac{a^2b^2c^2}{b^2c^2+c^2a^2-a^2b^2}+\frac{a^2b^2c^2}{c^2a^2+a^2b^2-b^2c^2}.\)
\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=0\Leftrightarrow\frac{bc+ac-ab}{abc}=0\)
Vì \(a,b,c\ne0\Rightarrow abc\ne0\)
\(\Rightarrow bc+ac-ab=0\)
\(\Rightarrow\hept{\begin{cases}\left(bc+ac\right)^2=\left(ab\right)^2\\\left(bc-ab\right)^2=\left(-ac\right)^2\\\left(ac-ab\right)^2=\left(-bc\right)^2\end{cases}\Rightarrow\hept{\begin{cases}b^2c^2+c^2a^2-a^2b^2=-2abc^2\\b^2c^2+a^2b^2-a^2c^2=2ab^2c\\a^2c^2+a^2b^2-b^2c^2=2a^2bc\end{cases}}}\)
\(\Rightarrow E=\frac{a^2b^2c^2}{2ab^2c}+\frac{a^2b^2c^2}{-2abc^2}+\frac{a^2b^2c^2}{2a^2bc}\)
\(\Rightarrow E=\frac{ac}{2}-\frac{ab}{2}+\frac{bc}{2}=\frac{ac-ab+bc}{2}=\frac{0}{2}=0\)
CHÚC BẠN HỌC TỐT
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{bc+ac-ab}{abc}=0\)
Vì \(a,b,c\ne0\Rightarrow a.b.c\ne0\)
\(\Rightarrow bc+ac-ab=0\)
\(\Rightarrow\hept{\begin{cases}\left(bc+ac\right)^2=\left(ab\right)^2\\\left(bc-ab\right)^2=\left(-ac\right)^2\\\left(ac-ab\right)^2=\left(-bc\right)^2\end{cases}\Rightarrow}\hept{\begin{cases}b^2c^2+c^2a^2-a^2b^2=-abc^2\\b^2c^2+a^2b^2-a^2c^2=2ab^2c\\a^2c^2+a^2b^2-b^2c^2=2a^2bc\end{cases}}\)
\(\Rightarrow E=\frac{a^2b^2c^2}{2ab^2c}+\frac{a^2b^2c^2}{-2abc^2}+\frac{a^2b^2c^2}{2a^2bc}\)
\(\Rightarrow E=\frac{ac}{2}-\frac{ab}{2}+\frac{bc}{2}=\frac{ac-ab+bc}{2}=\frac{0}{2}=0\)
Vậy \(E=0\)
A, Cho 3 số a;b;c thỏa mãn \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)và 3a+2b-c khác 0 . Tính giá trị của biểu thức: \(B=\frac{a+7b-2c}{3a+2b-c}\)
B, Cho 3 số a;b;c thỏa mãn \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)và 3a+2b-c=4 . Tìm các số a;b;c
a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\); \(b=3k\); \(c=5k\)
Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)
b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)
\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)
\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)
\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)
\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)
Do đó: +) \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)
+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)
+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)
1) Cho các số a,b,c thỏa mãn: a+b+c=3;\(\frac{1}{2a^2}+\frac{1}{2b^2}+\frac{1}{2c^2}+\frac{3}{2}=\frac{\sqrt{2b-1}}{a}+\frac{\sqrt{2c-1}}{b}+\frac{\sqrt{2a-1}}{c}\)
Tính M=\(\frac{\left(a+1\right)^2}{ab+1}+\frac{\left(b+1\right)^2}{bc+1}+\frac{\left(c+1\right)^2}{ca+1}\)
cho a, b, c là các số lớn hơn 1.
Tìm Min P=\(\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
\(P=\frac{a^2-1+1}{a-1}+\frac{2\left(b^2-1+1\right)}{b-1}+\frac{3\left(c^2-1+1\right)}{c-1}\)
\(P=a-1+2+\frac{1}{a-1}+2\left(b-1\right)+4+\frac{2}{b-1}+3\left(c-1\right)+6+\frac{3}{c-1}\)
=>\(P=a-1+\frac{1}{a-1}+2\left(b-1\right)+\frac{2}{b-1}+3\left(c-1\right)+\frac{3}{c-1}+12\)
ap dung bdt co si ta co
xay ra dau = khi va chi khi a=b=c=2
Cho các số thực dương $a,b,c$ thỏa mãn $a+b+c=1$. Chứng minh rằng $\frac{a}{2a+b^{2}}+\frac{b}{2b+c^{2}}+\frac{c}{2c+a^{2}}\leq \frac{1}{7}\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )$
Ta có: \(2a+b^2=2a\left(a+b+c\right)+b^2=b^2+2a^2+2ab+2ac\)
\(\ge4ab+2ac+a^2\)
\(\Rightarrow\frac{a}{2a+b^2}\le\frac{a}{4ab+2ac+a^2}=\frac{1}{4b+2c+a}\)
\(\le\frac{1}{49}.\frac{49}{4b+2c+a}=\frac{1}{49}.\frac{\left(4+2+1\right)^2}{4b+2c+a}\)
\(\le\frac{1}{49}\left(\frac{16}{4b}+\frac{4}{2c}+\frac{1}{a}\right)=\frac{1}{49}\left(\frac{4}{b}+\frac{2}{c}+\frac{1}{a}\right)\)
CMTT: \(\frac{b}{2b+c^2}\le\frac{1}{49}\left(\frac{4}{c}+\frac{2}{a}+\frac{1}{b}\right);\frac{c}{2c+a^2}\le\frac{1}{49}\left(\frac{4}{a}+\frac{2}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{a}{2a+b^2}+\frac{b}{2b+c^2}+\frac{c}{2c+a^2}\le\frac{1}{7}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( đpcm )
cho a,,c là các số lớn hơn 1 . tìm min của bt \(A=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
Cho abc=36,\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) .Tính
Q=\(\frac{a^2\left(b^2+c^2\right)-b^2c^2}{a^2b^2c^2}\cdot\frac{b^2\left(c^2+a^2\right)-c^2a^2}{a^2b^2c^2}\cdot\frac{c^2\left(a^2+b^2\right)-a^2b^2}{a^2b^2c^2}\)