Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Zero Two
Xem chi tiết
Nguyễn Huy Tú
20 tháng 7 2021 lúc 17:52

A B C D H 12 16

Xét tam giác ABC vuông tại A, đường cao AH

Áp dụng định lí Pytago tam giác ABC vuông tại A

\(BC^2=AB^2+AC^2=144+256=400\Rightarrow BC=20\)cm 

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{144}{20}=\frac{36}{5}\)cm 

* Áp dụng hệ thức : \(AC^2=CH.BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{256}{20}=12,8\)cm 

Vì AD là đường pg nên \(\frac{AB}{AC}=\frac{BD}{DC}\Rightarrow\frac{DC}{AC}=\frac{BD}{AB}\)

Áp dụng tunhs chất dãy tỉ số bằng nhau 

\(\frac{DC}{AC}=\frac{BD}{AB}=\frac{BC}{AB+AC}=\frac{20}{28}=\frac{5}{7}\)

\(\Rightarrow BD=\frac{5}{7}.AB=\frac{5}{7}.12=\frac{60}{7}\)cm 

=> \(HD=BD-BH=\frac{60}{7}-\frac{36}{5}=\frac{48}{35}\)cm 

Khách vãng lai đã xóa
tamanh nguyen
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 12 2021 lúc 15:50

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

Trần Quốc Anh
Xem chi tiết

Cho tam giác ABC có đường trung tuyến AM, gọi N là trung điểm cạnh AC. Lấy điểm E đối xứng với M qua N. Tìm điều kiện của tam giác ABC để tứ giác AMCE là hình chữ nhật.

Tam giác ABC vuông tại A            Tam giác ABC cân tại A             Tam giác ABC vuông tại B         Tam giác ABC cân tại B

Khách vãng lai đã xóa
Zero Two
Xem chi tiết
Nguyễn Huy Tú
20 tháng 7 2021 lúc 18:09

A B C H

Xét tam giác ABC vuông tại A, đường cao AH

Ta có : \(\frac{HB}{HC}=\frac{1}{4}\Rightarrow HB=\frac{1}{4}HC\)

* Áp dụng hệ thức : \(AH^2=BH.HC=\left(\frac{1}{4}HC\right)HC=\frac{1}{4}HC^2\)

\(\Rightarrow196=\frac{1}{4}HC^2\Leftrightarrow HC^2=784\Leftrightarrow HC=28\)cm 

=> HB = 28/4 = 7 cm 

=> BC = HB + HC = 28 + 7 = 35 cm 

Áp dụng định lí Pytago tam giác AHB vuông tại H 

\(AB^2=BH^2+AH^2=49+196=245\Rightarrow AB=7\sqrt{5}\)cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AC=\frac{AH.BC}{AB}=14\sqrt{5}\)cm

Chu vi tam giác ABC là : \(P_{ABC}=AB+AC+BC=35+21\sqrt{5}\)cm 

Khách vãng lai đã xóa
01- Nguyễn Khánh An
Xem chi tiết
NGUYỄN♥️LINH.._.
21 tháng 3 2022 lúc 20:54

C

Mạnh=_=
21 tháng 3 2022 lúc 20:54

C

Kaito Kid
21 tháng 3 2022 lúc 20:55

C

Nguyễn Bad Boy
Xem chi tiết
Vĩnh Khang Bùi
Xem chi tiết
Zero Two
Xem chi tiết
Nguyễn Huy Tú
27 tháng 7 2021 lúc 9:00

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AH^2=BH.CH=8.2=16\Rightarrow AH=4\)cm 

Áp dụng định lí Pytago tam giác ABH vuông tại H : 

\(AB^2=BH^2+AH^2=4+16=20\Rightarrow AB=2\sqrt{5}\)cm 

-> BC = BH + CH = 8 + 2 = 10 cm 

Áp dụng định lí Pytago tam giác ABC vuông tại A

\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=100-20=80\Rightarrow AC=4\sqrt{5}\)cm 

* sinB = AC/BC = \(\frac{4\sqrt{5}}{10}=\frac{2\sqrt{5}}{5}\)

cosB = AB/BC = \(\frac{2\sqrt{5}}{10}=\frac{\sqrt{5}}{5}\)

tanB = AC/AB = \(\frac{4\sqrt{5}}{2\sqrt{5}}=2\)

cotaB = AB/AC \(\frac{2\sqrt{5}}{4\sqrt{5}}=\frac{1}{2}\)

Khách vãng lai đã xóa
Trần Diệu Linh
Xem chi tiết