tính nhanh
A = 1x3 + 3x5 + 5x7 + .............+ 37x39 + 39x41
Bài tập tham khảo:
Bài 1: Tính tổng A = 1/3x5 + 1/5x7 + 1/7x9 + ......+1/37x39
\(A=\dfrac{1}{3.5}+\dfrac{1}{7.9}+...+\dfrac{1}{37.39}\\ =\dfrac{1}{2}\left(\dfrac{2}{3.5}+\dfrac{2}{7.9}+...+\dfrac{2}{37.39}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{37}-\dfrac{1}{39}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{39}\right)\\ =\dfrac{1}{2}.\dfrac{4}{13}\\ =\dfrac{2}{13}\)
A=13.5+17.9+...+137.39=12(23.5+27.9+...+237.39)=12(13−15+15−17+...+137−139)=12(13−139)=12.413=213
a, 2/1x3 + 2/3x5 + 2/5x7 + 2/7x9 +...+ 9/913 x 215
b,1/1x3 + 1/3x5 + 1/5x7 + 1/7x9 + 1/213 x 215
[ Giúp mik với mấy bạn ơi ai nhanh mình sẽ tick nha TvT ]
( Toán tính nhanh nha )
sửa đề câu a và câu b nhá , mik nghĩ đề như này :
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
= \(\frac{1}{1}-\frac{1}{215}\)
\(=\frac{214}{215}\)
b, đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{213\cdot215}\)
\(A\cdot2=\frac{2}{1\cdot3}+\frac{2}{3.5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{215}\)
\(A\cdot2=\frac{214}{215}\)
\(A=\frac{214}{215}:2\)
\(A=\frac{107}{215}\)
@ミ★Ŧɦươйǥ★彡 cảm ơn bạn nhiều
trả lời hiền thương đề bài của bạn ấy là đúm gòi nha
tính nhanh các tổng sau
a, 2/1x3 + 2/3x5 + 2/5x7 + ... + 2/99x101
\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+...+\dfrac{2}{99\times101}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ =1-\dfrac{1}{101}\\ =\dfrac{100}{101}\)
tính nhanh
a)a=2/3x5+2/5x7+2/7x9+...+2/37x39
b)(17/28+18.29+19/30+30/31)x(-5/12+1/4+1/6)
a) \(a=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{37\cdot39}\)
\(a=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{37}-\frac{1}{39}\)
\(a=\frac{1}{3}-\frac{1}{39}\)
\(a=\frac{12}{39}\)
b) \(\left(\frac{17}{28}+18.29+\frac{19}{30}+\frac{30}{31}\right)\cdot\left(\frac{-5}{12}+\frac{1}{4}+\frac{1}{6}\right)\)
\(=\left(\frac{17}{28}+18.29+\frac{19}{30}+\frac{30}{31}\right)\cdot\left(\frac{-5}{12}+\frac{3}{12}+\frac{2}{12}\right)\)
\(=\left(\frac{17}{28}+18.29+\frac{19}{30}+\frac{30}{31}\right)\cdot\left(\frac{-2}{12}+\frac{2}{12}\right)\)
\(=\left(\frac{17}{28}+18.29+\frac{19}{30}+\frac{30}{31}\right)\cdot0\)
\(=0\)
a) \(A=\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+...+\frac{2}{37x39}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{37}-\frac{1}{39}\)
\(A=\frac{1}{3}-\frac{1}{39}\)
\(A=\frac{4}{13}\)
b) \(\left(\frac{17}{28}+18.29+\frac{19}{30}+\frac{30}{31}\right)x\left(\frac{-5}{12}+\frac{1}{4}+\frac{1}{6}\right)\)
\(=\left(\frac{17}{28}+18.29+\frac{19}{30}+\frac{30}{31}\right)x0\)
\(=0\)
tính nhanh
1x3 + 3x5 + 5x7 + 7x9 + ......... + 97x99
\(\frac{6}{1x3}\)+\(\frac{6}{3x5}\)+\(\frac{6}{5x7}\)+ .............+ \(\frac{6}{35x37}\)+\(\frac{6}{37x39}\)
tính bằng cách thuận tiện
1/2 x (6/1-6/3+6/3-6/5+ ... +6/37-6/39)
1/2 x (6/1-6/39)
1/2 x 228/39
228/78
\(\frac{6}{1\cdot3}+\frac{6}{3.5}+\frac{6}{5.7}+...+\frac{6}{35.37}+\frac{6}{37.39}\)
\(=3\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{37}-\frac{1}{39}\right)\)
\(=3\left(1-\frac{1}{39}\right)=3\cdot\frac{38}{39}=\frac{114}{39}\)
Ps: Bạn tự rút gọn nhé!!!
\(\frac{6}{1.3}+\frac{6}{3.5}+...+\frac{6}{35.37}+\frac{6}{37.39}\)
\(=3\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{35.37}+\frac{2}{37.39}\right)\)
\(=3\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{37}-\frac{1}{39}\right)\)
\(=3\left(1-\frac{1}{39}\right)\)
\(=3.\frac{38}{39}\)
\(=\frac{38}{13}\)
Tính nhanh: 3/1x3+3/3x5+3/5x7+...+3/49x51
\(\frac{3}{1x3}+\frac{3}{3x5}+...+\frac{3}{49x51}=\frac{3}{2}\left(\frac{2}{1x3}+\frac{2}{3x5}+...+\frac{2}{49x51}\right)=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{3}{2}.\frac{50}{51}=\frac{25}{17}\)
Tính nhanh
2/1x3 + 2/3x5 + 2/5x7 + 2/7x9 +...+ 2/19x21
\(\frac{2}{1\times3}+\frac{2}{3\times5}+...+\frac{2}{19\times21}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{21}\)
\(=1-\frac{1}{21}=\frac{20}{21}\)
đúng cái nhé
Tính nhanh :
3 / 1x3 + 3 / 3x5 + 3 / 5x7 +.............+ 3 / 2017x2019
\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{2017.2019}\)
\(=\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{3}{2}.\left(1-\frac{1}{2019}\right)\)
\(=\frac{3}{2}.\frac{2018}{2019}\)
\(=\frac{1009}{673}\)
\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}.....+\frac{3}{2017.2019}\)
\(=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{2017.2019}\right)\)
\(=\frac{3}{2}\left(1-\frac{1}{3}+....+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{3}{2}\left(1-\frac{1}{2019}\right)\)
\(=\frac{3}{2}.\frac{2018}{2019}=\frac{1009}{673}\)
\(\frac{3}{1\times3}+\frac{3}{3\times5}+.......+\frac{3}{2017\times2019}\)
\(=\frac{3}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+......+\frac{2}{2017\times2019}\right)\)
\(=\frac{3}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.......+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{3}{2}\times\left(1-\frac{1}{2019}\right)\)
\(=\frac{3}{2}\times\frac{2018}{2019}\)
\(=\frac{1009}{673}\)