Cho
\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2003.2004}+\frac{1}{2005.2006}\)
\(B=\frac{1}{1004.2006}+\frac{1}{1005.2005}+\frac{1}{1006.2004}+...+\frac{1}{2006.1004}\)
Tìm \(\frac{A}{B}\)
Chắc chắn 100% đề bài đúng!!
Cho:
\(A=\frac{1}{1.2}+\frac{1}{3.4}+.....+\frac{1}{2003.2004}+\frac{1}{2005.2006}\)
\(B=\frac{1}{1004.2006}+\frac{1}{1005.2005}+\frac{1}{1006.2004}+.....+\frac{1}{2006.1004}\)
Hãy tính \(\frac{A}{B}\)
1, Cho
A = \(\frac{1}{1.2}+\frac{1}{3.4}+....+\frac{1}{2005.2006}\)
B = \(\frac{1}{1004.2006}+\frac{1}{1005.2005}+\frac{1}{1006.2004}+.......+\frac{1}{2006.1004}\)
Hãy Tính \(\frac{A}{B}\)
A=1−12+13−14+...+12005−12006=(1+12+...+12006)−(1+12+..+11003)=11004+11005+...+12006" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:18.06px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:41.489em; padding:1px 0px; position:relative; white-space:nowrap; width:749.281px; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
13010.B=11004+12006+11005+12005+...+11004=11505(11004+11005+...+12006)" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:18.06px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
Suy ra A/B = 1505
Tham khảo nha
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2005.2006}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2005}-\frac{1}{2006}\)
\(=1-\frac{1}{2006}\)
\(=\frac{2005}{2006}\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2003.2004}+\frac{1}{2005.2006}\)
\(B=\frac{1}{1004.2006}+\frac{1}{1005.2005}+\frac{1}{1006.2004}+...+\frac{1}{2006.1004}\)
Tính \(\frac{A}{B}\)
.
.
.
,
- Đề bài toàn toàn không sai
- Tiêu chí like: + Đúng
+ Nhanh
+ Dễ hiểu
nguyentuantai 1 phút trước (09:28)
lí do 1 quá dài
li do 2 ko thấy đề
Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+............+\frac{1}{2005.2006}\)
\(B=\frac{1}{1004.2006}+\frac{1}{1005.2005}+.....+\frac{1}{2006.1004}\)
Tính \(\frac{A}{B}\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{2005.2006}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2005}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
\(=\left(1+\frac{1}{2}+...+\frac{1}{2006}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
\(=\left(1+\frac{1}{2}+...+\frac{1}{2006}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1003}\right)\)
\(=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\)(1)
\(B=\frac{1}{1004.2006}+\frac{1}{1005.2005}+....+\frac{1}{2006.1004}\)
\(\Rightarrow\frac{1}{1004}+\frac{1}{2006}+\frac{1}{1005}+\frac{1}{2005}+...+\frac{1}{2006}+\frac{1}{1004}=2\left(\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\right)\)
\(=\frac{\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}}{1505}\)(2)
Thế (1) và (2) vào ta có:
\(\frac{A}{B}=\frac{\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}}{\frac{\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}}{1505}}\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\);\(B=\frac{1}{1004.2006}+\frac{1}{1005.2006}+...+\frac{1}{2006.1004}\)
Chứng minh rằng \(\frac{A}{B}\)thuộc Z
Bài 1 : Tính hợp lý :
a) A = 182 . \(\left(\frac{1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}}{2+\frac{2}{3}+\frac{2}{9}+\frac{2}{27}}:\frac{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}\right)\) : \(\frac{919191}{808080}\)
b) C = \(-2+\frac{1}{-2+\frac{1}{-2+\frac{1}{-2+\frac{1}{3}}}}\)
c) D = \(\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\right)\): \(\left(\frac{1}{1004.2006}+\frac{1}{1005.2005}+...+\frac{1}{2006.1004}\right)\)
Cho A=\(\frac{1}{1.2}\)+\(\frac{1}{3.4}\)+\(\frac{1}{5.6}\)+...+\(\frac{1}{2005.2006}\)
B=\(\frac{1}{1004.2006}\)+\(\frac{1}{1005.2005}\)+...+\(\frac{1}{2006.1004}\)
Chứng minh \(\frac{A}{B}\) là số nguyên
Cho A=\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\)
B=\(\frac{1}{1004.2006}+\frac{1}{1005.2006}+\frac{1}{1006.2006}+...+\frac{1}{2006.2006}\)
Tính A chia B
Tinh \(A=\frac{1}{1004.2006}+\frac{1}{1005.2005}+\frac{1}{1006.2004}+...+\frac{1}{2006\cdot1004}\)
B=\(\frac{1}{1004.2006}+\frac{1}{1005.2005}+...+\frac{1}{2006.1004}\)
BÀI GIẢI
A=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}=\left(1+\frac{1}{2}+...+\frac{1}{2006}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1003}\right)\)
=\(\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\)
Lại có \(\frac{1}{3010}.B=\frac{1}{1004}+\frac{1}{2006}+\frac{1}{1005}+\frac{1}{2005}+...+\frac{1}{1004}=1505.\left(\frac{1}{1004}+...+\frac{1}{2006}\right)\)
Vậy A/B=1505. Từ bài toán này, chắc cx nghĩ ra cách làm rồi nhỉ
BẤM ĐÚNG CHO TUI
Mình mở rộng bài toán nhé, xong tự nghĩ cách giải . Đề mở rộng là:
Tính A/B biết \(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\)