Cho (P ): y=x2 và (d): y=2x+m
a, Tìm m để (d) tiếp xúc (p)
b, Tìm tọa độ tiếp điểm
Cho parabol (P) : y = x2 và đường thẳng d: y = x - m + 1
1. Tìm m để d tiếp xúc với (P). Khi đó tìm tọa độ tiếp điểm.
cho hàm số (P) y=2x^2
a)vẽ (P)
b)tìm trên đồ thị điểm:
-hoành độ bằng 2 tung độ
-điiểm có tung độ và hoành độ bằng nhau
-tung độ bằng 2 hoành độ
c)xét số giao điểm của(P)với đường thẳng (d) y=mx-1
d)biết pương trình đường thẳng (d) đi qua điểm M(0;-2)và tiếp xúc với (P)
bài 1: y=(2-m)x +m+1 (d)
a, khi m=0, hãy vẽ d trên hệ trục toạ độ Oxy
b, tìm m để d cắt y=2x-5 tại hoành độ bằng 2
c, tìm m để d cùng các trục Ox, Oy tạo thành tam giác có diện tích bằng 2
bài 2: cho (O;R)và A ngoài (O;R), từ A kẻ 2 tiếp tuyến AB và AC với (O), (B,C là tiếp điểm). gọi H là giao điểm OA và BC
a, CM 4 điểm A,B,O,C cùng thuộc 1 đường tròn
b, CM OA là đường trung trực BC
c, lấy D là điểm đối xứng với B qua O. gọi E là giao điểm AD và (O) ( E khác D). CM DE/BE = BD/AB
d, tính góc HEC
Cho hàm số parabol (P): y=x^2 và d(m)=mx-2
a) Vẽ B lên mặt phẳng tọa độ
b)Khi m=3 tìm tọa độ giao điểm của d(m) = d(3)
c) A ( xA,yA) B(xB,yB) là giao điểm của P và d(m). Tìm m để yA+yB=2(xA+xB)-1
cho hàm số y = 2x+2 có đồ thhij là (d) và hàm số y = -x-1 có đồ thị là (d1)
a, vẽ (d) và (d1) trên cùng 1 mặt phẳng tọa độ trên tọa độ giao điểm của (d) và (d1) bằng phép toán
b, cho hàm số y=(m^2-11) x+m-5 (m là hàm số) co đò thị là (d2).tìm m để đt (d2) cắt đt (d).tìm m dể đt (d2) song song với đường thẳng (d)
trong mặt phẳng tọa đọ Oxy cho A(1,2); B(-2,1) a) Tính diện tích tam giác OAB và tọa độ giao điểm M của AB với trục hoành b) Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC?
trong mặt phẳng tọa độ Oxy cho A(-3;6); B(1;-2); C(6;3)
a) Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC?
b) Tìm toạ độ tâm K đường tròn nội tiếp
c) Tìm toạ độ H là trực tâm của tam giác đó
d) Tìm toạ độ điểm E với E là đường cao kẻ từ A
e) Tìm toạ độ điểm G với G là chân đường phân giác kẻ từ A xuống BC
Giúp em vs , bài hơi khó
a, Gọi \(I\left(x;y\right)\) là tâm đường tròn ngoại tiếp \(\Delta ABC\)
\(\Rightarrow\left\{{}\begin{matrix}IA=IB\\IA=IC\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}IA^2=IB^2\\IA^2=IC^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(-3-x\right)^2+\left(6-y\right)^2=\left(1-x\right)^2+\left(-2-y\right)^2\\\left(-3-x\right)^2+\left(6-y\right)^2=\left(6-x\right)^2+\left(3-y\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=-5\\3x-y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
cho hàm số : y=-x^2 (p)
a, tìm tập hợp các điểm M sao cho có thể kẻ được 2 đường thẳng vuông góc với nhau và tiếp xúc với (p)
b, tìm trên (p) các điểm sao cho khoảng cách tới gốc tọa độ = căn2
Trong mặt phẳng Oxy, cho I(-1;2), M(-3;5).
a) Viết phương trình đường tròn (C) có tâm I và đi qua M.
b) Tìm m để đường thẳng (\(\Delta\)): 2x + 3y + m = 0 tiếp xúc với (C).
c) Viết phương trình tiếp tuyến của (C) tại 2 giao điểm A, B của (C) và (d): x - 5y - 2 = 0.
d) Tìm điểm C để tam giác ABC vuông và nội tiếp (C).
b, \(d\left(I;\Delta\right)=R\Leftrightarrow\dfrac{\left|-2+6+m\right|}{\sqrt{13}}=\sqrt{13}\)
\(\Rightarrow\left[{}\begin{matrix}m=9\\m=-17\end{matrix}\right.\)
c, Dễ tìm được tọa độ A, B: \(\left\{{}\begin{matrix}A=\left(-3,-1\right)\\B=\left(2,0\right)\end{matrix}\right.\)
Phương trình tiếp tuyến tại A có dạng: \(\Delta_1:ax+by+3a+b=0\left(a^2+b^2\ne0\right)\)
Ta có: \(d\left(I,\Delta_1\right)=\dfrac{\left|-a+2b+3a+b\right|}{\sqrt{a^2+b^2}}=\sqrt{13}\)
\(\Leftrightarrow\left(2a+3b\right)^2=13a^2+13b^2\)
\(\Leftrightarrow4a^2+9b^2+12ab=13a^2+13b^2\)
\(\Leftrightarrow9a^2+4b^2-12ab=0\)
\(\Leftrightarrow9a^2+4b^2-12ab=0\)
\(\Leftrightarrow3a=2b\)
\(\Rightarrow\Delta_1:2x+3y+9=0\)
Tương tự tiếp tuyến tại B: \(\Delta_2:3x-2y-6=0\)
a, \(R=IM=\sqrt{\left(-3+1\right)^2+\left(5-2\right)^2}=\sqrt{13}\)
Phương trình đường tròn: \(\left(x+1\right)^2+\left(y-2\right)^2=13\)