vòng 2 xin được bắt đầu :
tính bằng cách thận tiện nhất
\(\frac{1}{125}+\frac{1}{125}+\frac{1}{125}+\frac{1}{125}+\frac{1}{125}=\)
Thực hiện phép tính bằng cách hợp lý nhất
\(\left(\frac{1}{125}-\frac{1}{2^3}\right).\left(\frac{1}{125}-\frac{1}{3^3}\right)...\left(\frac{1}{125}-\frac{1}{100^3}\right)\)
trong tích trên có 1 thừa số như thế này:
\(\left(\frac{1}{125}-\frac{1}{5^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{125}\right)\)
=0
=> tích trên bằng 0
Tính \(C=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)\left(\frac{1}{125}-\frac{1}{3^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
Tính giá trị của biểu thức \(A=\left(\frac{1}{125}-\frac{1}{1^3}\right).\left(\frac{1}{125}-\frac{1}{2^3}\right).\left(\frac{1}{125}-\frac{1}{3^3}\right)...\left(\frac{1}{125}-\frac{1}{19^3}\right).\left(\frac{1}{125}-\frac{1}{20^3}\right)\)
Tính nhanh : A= \(\left(\frac{1}{125}-\frac{1}{1^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{2^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{3^3}\right).....\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\)\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\) \(.\) \(\left(\frac{1}{125}-\frac{1}{2^3}\right)\) \(.\) \(\left(\frac{1}{125}-\frac{1}{3^3}\right)\) \(.\) \(\left(\frac{1}{125}-\frac{1}{5^3}\right)\)\(...\) \(\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\) \(\left(\frac{1}{125}-\frac{1}{1^3}\right)\) \(.\) \(\left(\frac{1}{125}-\frac{1}{2^3}\right)\) \(.\) \(\left(\frac{1}{125}-\frac{1}{3^3}\right)\) \(.\) \(0\) \(....\) \(\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\) \(0\)
TÍNH NHANH
\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{2^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{3^3}\right)\cdot\cdot\cdot\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{5^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...0...\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=0\)
\(M=\frac{1}{125\cdot2^3}\cdot\frac{1}{125\cdot3^3}\cdot\frac{1}{125\cdot4^3}\cdot....\cdot\frac{1}{125\cdot20^3}\)
Ta có \(M=\frac{1}{125\cdot2^3}\cdot\frac{1}{125\cdot3^3}\cdot\frac{1}{125\cdot4^3}\cdot...\cdot\frac{1}{125\cdot20^3}\)
\(\Rightarrow M=0\)
Giá trị của biểu thức C= \(\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(C=\left(\frac{1}{125}-\frac{1}{1^3}\right).\left(\frac{1}{125}-\frac{1}{2^3}\right)....\left(\frac{1}{125}-\frac{1}{5^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(\Rightarrow C=\left(\frac{1}{125}-\frac{1}{1^3}\right).\left(\frac{1}{125}-\frac{1}{2^3}\right)...0...\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(\Rightarrow C=0\)
Tính:
\(A=\left(\frac{1}{125}-\frac{1}{1^3}\right).\left(\frac{1}{125}-\frac{1}{2^3}\right)\)\(...\left(\frac{1}{125}-\frac{1}{100^3}\right)\)
Ai nhanh mình tick cho
\(A=\left(\frac{1}{125}-\frac{1}{1^3}\right).\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{100^3}\right)\)
\(A=\left(\frac{1}{125}-\frac{1}{1^3}\right).\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{5^3}\right)...\left(\frac{1}{125}-\frac{1}{100^3}\right)\)
\(A=\left(\frac{1}{125}-\frac{1}{1^3}\right).\left(\frac{1}{125}-\frac{1}{2^3}\right)...0...\left(\frac{1}{125}-\frac{1}{100^3}\right)\)
\(\Rightarrow A=0\)
\(|97\frac{2}{3}-125\frac{3}{5}|+97\frac{2}{5}-125\frac{1}{3}\)