cho \(x+y+z=0\) va -1<=x y z<=1 cm
\(x^2+y^4+z^6< =2\)
cho x^2+y^2+z^2=5/2 va x,y,z>0 cm 1/x+1/y<1/xyz+1/z\(cho x^2+y^2+z^2=5/2 va x,y,z>0 cm 1/x+1/y<1/xyz+1/z\)
Cho x,y,z khac 0 va x - y -z = 0. Tinh gia tri bieu thuc A = ( 1- z/x)(1-x/y)(1-y/z)
Cho x.y.z khac 0 va x+y+z=0 .Tinh
(1+x/y)(1+y/z)(1+z/x)
x+y+z=0
=>x+y=-z
=>y+z=-x
=>z+x=-y
(1+x/y)(1+y/z)(1+z/x)
(y+x/y)(z+y/z)(x+z/x)
-z/y.-x/z.-y/x
=-1
Cho x.y.z khac 0 va x+y+z=0.Tính giá trị biểu thuc
A=(1+ x/y)(1+ y/z)(1+z/x)
Cho x,y,z khac o va x-y-z=0.Tinh gia tri cua bieu thuc A=(1-z/x)(1-x/y)(1+y/Z)
cho x+y+z =0 va xy+yz+zx=0 Tính S=(x-1)^2015+(y-1)^2016+(z-1)^2017
Cho x^2 +y^2+z^2 =1 va x,y,z > 0 Chứng minh x^3/(y+2z)+y^3/(z+2x)+z^3/(x+2y)>=1/3
\(\text{Cho:}x^2+y^2+z^2=1\text{.Chứng minh rằng:}\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{z+2y}\ge\frac{1}{3}\)
\(\text{Áp dụng BĐT Cosi cho 2 số dương, ta có:}\)
\(\frac{9x^3}{y+2z}+x\left(y+2z\right)\ge6x^2;\frac{9y^3}{z+2x}+y\left(z+2x\right)\ge6y^2;\frac{9z^3}{x+2y}+z\left(x+2y\right)\ge6z^3\)
\(\text{Lại có:}\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\)
\(\text{Do đó:}\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}+3\left(xy+yz+zx\right)\ge6\left(x^2+y^2+x^2\right)\)
\(\Leftrightarrow\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}\ge6\left(x^2+y^2+z^2\right)-3\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)
\(\text{Dấu "=" xảy ra }\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
cho minh hoi phan bat dang thuc cosi la ban dung cong thuc the nao ak
Cho x3+y3+z3=3xyz va x+y+z khac 0.Tinh
P=(1+x/y)*(1+y/z)*(1+z/x)
x3 + y3 + z3 = 3xyz
x3 + y3 + z3 – 3xyz = 0
x3 + y3 + z3 – xyz – xyz – xyz = 0
x3 + y3 + z3 – xyz – xyz – xyz - x2y – y2x – x2z – z2x - y2z – z2y + x2y + y2x + x2z + z2x + y2z+ z2y = 0
(x3 + x2y + x2z) + (y3 + y2x + y2z) + (z3 + z2x + z2y) – ( xyz + x2y + y2x) - (xyz + x2z + z2x) - (xyz + z2y + y2z) = 0
( x + y + z ) ( x2 + y2 + z2 – xy – xz – yz) = 0 ó ( x + y + z )( x – y)2(y – z)2(z – x)2 = 0
=> x + y + z = 0 hoặc x = y = z
mà theo đề ra thì x + y + z \(\ne\)0 nên x = y = z
vậy P = ..............
x;y;z khac 0 va x-y-z=0 . tinh B=(1- z/x).(1- x/y).(1+y/z)
x-y-z=0
=> x=y+z
y=x-z
-z=y-x
B=(1-z/x)(1-x/y)(1+y/z)
B=((x-z)/x)((y-x)/y)((z+y)/z)
B=(y/x)(-z/y)(x/z)
B=(-z.y.x)/(x.y.z)
B=-1
cho a/x=b/y=c/z=1/5 va x+y+z khac 0 tinh A=x+y+z/a+b+c
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{a+b+c}{x+y+z}=\frac{1}{5}\)
\(\Rightarrow A=\frac{x+y+z}{a+b+c}=\frac{5}{1}=5\)
Vậy A = 5