Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen ngoc thanh
Xem chi tiết
quangcute
Xem chi tiết
Đào Trọng Luân
30 tháng 5 2018 lúc 11:53

\(n^3+9n^2+23n+15=n^3+n^2+8n^2+8n+15n+15\)

\(=n^2\left(n+1\right)+8n\left(n+1\right)+15\left(n+1\right)\)

\(=\left(n+1\right)\left(n^2+8n+15\right)=\left(n+1\right)\left(n^2+5n+3n+15\right)\)

\(=\left(n+1\right)\left[n\left(n+5\right)+3\left(n+5\right)\right]=\left(n+1\right)\left(n+5\right)\left(n+3\right)\)

Vì n là số tự nhiên lẻ nên \(\left(n+1\right)\left(n+3\right)\left(n+5\right)\)là tích ba số chẵn liên tiếp nên chia hết cho 48 ko phải 18 nhé :D

Lê Tài Bảo Châu
Xem chi tiết
mai sương
Xem chi tiết
Hồ Thu Giang
16 tháng 7 2015 lúc 22:10

TH1: n chia hết cho 3

=> n2 + n chia hết cho 3 

Mà 2 chia 3 dư 2

=> n2 + n + 2 chia 3 dư 2

TH2: n chia 2 dư 1

=> n2 chia 3 dư 1

=> n2 + n chia 3 dư 2

Mà 2 chia 3 dư 2

=> n2 + n + 2 chia 3 dư 1

TH3: n chia 3 dư 2

=> n2 chia 3 dư 1

=> n2 + n chia hết cho 3

Mà 2 chia 3 dư 2

=> n2 + n + 2 chia 3 dư 2

KL: Vậy với mọi số nguyên n thì n2 + n + 2 không chia hết cho 3 (đpcm)

Đinh Tuấn Việt
16 tháng 7 2015 lúc 22:11

Hồ Thu Giang ơi ! Bạn xem kĩ bài đi, sai 1 số chỗ đấy ! 

Lê Tài Bảo Châu
Xem chi tiết
Hoàng Nguyễn Văn
25 tháng 3 2019 lúc 22:27

* m^2+n^2 chia hết cho 3 thì m,n chia hết cho 3

Giả sử m không chia hết cho 3 => m^2 o chia hết cho 3 mà m^2 chia 3 dư 0 hoặc 1 => m^2 chia 3 dư 1 => n^2 chia 3 dư 2 (vô lý)

=>giả sử sai => m chia hết cho 3 

                         Chứng minh tương tự n chia hết cho 3

* m,n chia hết cho 3 => m^2+n^2  chia hết cho 3 

Vì m,n chia hết cho 3 => m^2, n^2 chia hết cho 3 => m^2+n^2 chia hết cho 3

Lê Tài Bảo Châu
Xem chi tiết
Hoàng Thu Trang
Xem chi tiết
tôi thích hoa hồng
12 tháng 2 2017 lúc 14:18

bạn có sách toán nâng cao và các chuyên đề không

tran messi
12 tháng 2 2017 lúc 14:21

ket ban

Hoàng Thu Trang
12 tháng 2 2017 lúc 14:37

mk có nè 

Văn Bùi Lê Dình
Xem chi tiết
Nguy duc tam
Xem chi tiết
Witch Rose
5 tháng 6 2017 lúc 8:37

xét 2 th

th1)\(n⋮11\)

\(=>\left(n+14\right)\left(n+3\right)không⋮11=>\left(n+14\right)\left(n+3\right)+22không⋮11=>không⋮121.\)

th2)\(nkhông⋮11\)

\(\left(n+14\right)\left(n+3\right)+22=n^2+17n+42+22=\left(n^2+6n+9\right)+11n+55=\left(n+3\right)^2+11n+5.\)

nếu \(\left(n+3\right)⋮11=>\left(n+3\right)^2⋮121\)

khi đó n chia 11 dư 8=>11n+55 chia 121 dư 22 =>đpcm

nếu \(\left(n+3\right)^2không⋮11=>đpcm\)