A=101+100+98+97+...+3+2+1/101-100+99-98+...+3-2+1
A = 1-2+3-4+5-6+.....+97-98+99-100+101
B = 1+2-3-4+5+6-7-8+......+98-99-100+101
B=1+2-(3+4)+5+6-..-100+101
B=(3+11+19+...+195)-(7+15+...+199)+101
B=25.99-25.103+101
B=-100+101=1
Vậy B=1
a=151
B=1 nha
a. A= (101+100+99+98+97+....+3+2+1) : (101-100+99-98+....+3-2+1)
b, B=(3737.43 -4343.37) : (2+4+6+....+100)
Tính nhanh
a, 1-2+3-4+.....+2015-2016+2017
b,1+3-5-7+9+11+....+97-98-99+100+101
c,1-2-3+4+5-6-7+....+97-98-99+100+101
d,2^100-2^99-2^98-....-2-1
Nhanh nha m dang cần gấp
A = \(\frac{101+100+99+98+97+...+3+2+1}{101-100+99-98+97-...+3-2+1}\)
Mik đố các bạn làm được :))
Xét tử ta có:
\(101+100+99+98+...........+3+2+1\)
\(=1+2+3+..........+99+100+101\)
\(=\frac{101.102}{2}=5151\)
Xét mẫu ta có:
\(101-100+99-98+.......+3-2+1\)
\(=\left(101-100\right)+\left(99-98\right)+.......+\left(3-2\right)+1\)
\(=1+1+.......+1+1=51\)
\(\Rightarrow A=\frac{5151}{51}=101\)
A=101+100+99+98+...+3+2+1/101-100+99-98+...+3-2+1
Lời giải:
Xét tử số:
$101+100+99+98+...+3+2+1=(101+1).101:2=5151$
Xét mẫu số:
$101-100+99-98+...+3-2+1$
$=(101-100)+(99-98)+...+(3-2)+1=\underbrace{1+1+....+1}_{50} +1=1.50+1=51$
Vậy $A=\frac{5151}{51}=101$
A=101+100+99+98+...+3+2+1/101-100+99-98+...+3-2+1
B=3737.43/4343.37
\(A=\dfrac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\\ A=\dfrac{\left[\left(101-1\right):1+1\right]\times\left(101+1\right):2}{1+1+...+1+1}\\ A=\dfrac{5151}{51}=101\\ B=\dfrac{3737.43}{4343.37}\\ B=\dfrac{37.101.43}{43.101.37}\\ B=1\)
a. A= (101+100+99+98+97+....+3+2+1) : (101-100+99-98+....+3-2+1)
b, B=(3737.43 -4343.37) : (2+4+6+....+100)
101+100+99+98+...+3+2+1/101-100+99-98+...+3-2+1
101+100+........+1/101-100+99-98+..........+3-2+1
=(101+1)*101:2 / (101-100)+..................+(3-2)+1
=51*101 / 1+1+1+..........+1( có 51 số 1)
=51*101/51
=105
vậy ........................................................................................
101+100+99+98+...+3+2+1/101-100+99-98+...+3-2+1
\(A=\frac{101+100+99+98+....+3+2+1}{101-100+99-98+...+3-2+1}\)
\(A=\frac{1+2+3+...+98+99+100+101}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)có 50 cặp số ở dưới mẫu
\(A=\frac{\frac{101.102}{2}}{50.1+1}\)
\(A=\frac{5151}{51}\)
\(A=101\)
Đặt A = 101+100+....+3+2+1
=> Số số hạng của A là: (101-1)+1 = 101 (số)
Tổng A là: (101+1) x 101 :2 = 5151
Đặt B = 101 -100+99 -98+97+...+3-2+1
=> 100 +98+....+1
=> Số số hạng: (100-1)+1 = 100 (số)
Tổng B là: (100 +1) x 100 :2 = 5050
Vậy \(\frac{A}{B}=\frac{5151}{5050}=\frac{51}{50}\)