cho a, b là số hữu tỉ
a/(a+2b) + 2b/(2a+b) là số nguyên
cmr a=b
cho a, b là số hữu tỉ
a/(a+2b) + 2b/(2a+b) là số nguyên
cmr a=b
`a/(a+2b)+(2b)/(2a+b)=(2a^2+3ab+4b^2)/(2a^2+5ab+2b^2)=((2a^2+5ab+2b^2)-2b(a-b))/(2a^2+5ab+2b^2)=1-(2b(a-b))/(2a^2+5ab+2b^2)\inZZ`
`=>(2b(a-b))/(2a^2+5ab+2b^2)\inZZ(1)`
Để `(1)` luôn đúng thì `=>a=b` `(` với `,b` không vi phạm điều kiện toán học `)`
Cho a,b hữu tỉ thỏa mãn a^3b+ab^3+2a^2b^2+2a+2b=0. CMR 1-ab là bình phương của 1 số hữu tỉ
Cho 2 số hữu tỉ a, b thỏa mãn đẳng thức a^3b + ab^3 + 2a^2b^2 + 2a + 2b + 1 = 0. Chứng minh rằng 1 - ab là bình phương của một số hữu tỉ
Ta có a3b+ab3+2a2b2+2a+2b+1=0
<=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab
<=>(a+b+1)2=-ab(a+b)2-(a+b)2
<=>(a+b+1)2=(a+b)2(1-ab)
Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)
Nếu a+b khác 0:
Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ
=>1-ab là bình phương của một số hữu tỉ
=>đpcm
Ta có a3b+ab3+2a2b2+2a+2b+1=0
<=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab
<=>(a+b+1)2=-ab(a+b)2-(a+b)2
<=>(a+b+1)2=(a+b)2(1-ab)
Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)
Nếu a+b khác 0:
Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ
=>1-ab là bình phương của một số hữu tỉ
=>đpcm
Đúng 3 Sai 0 Sky Blue đã chọn câu trả lời này.Ta có a3b+ab3+2a2b2+2a+2b+1=0
<=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab
<=>(a+b+1)2=-ab(a+b)2-(a+b)2
<=>(a+b+1)2=(a+b)2(1-ab)
Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)
Nếu a+b khác 0:
Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ
=>1-ab là bình phương của một số hữu tỉ
=>đpcm
Cho các số thực a, b thỏa mãn 3a − 2b và 2a + 5b đều là các số hữu tỷ. Chứng minh a, b đều là các số hữu tỷ.
Cho các số thực a, b thỏa mãn 3a − 2b và 2a + 5b đều là các số hữu tỷ. Chứng minh a, b đều
là các số hữu tỷ.
\(\hept{\begin{cases}3a-2b\inℚ\\2a+5b\inℚ\end{cases}}\Rightarrow5\left(3a-2b\right)+2\left(2a+5b\right)=19a\inℚ\Leftrightarrow a\inℚ\)
\(\Rightarrow-2b\inℚ\Leftrightarrow b\inℚ\).
Ta có đpcm.
Bài 3
Xét xem các số a,b có thể là số hữu tỷ không nếu
a, a + b và a - b đều là số hữu tỷ
b, 2a + b và 3a - 2b đều là số hữu tỷ
ta có :
a. \(a=\frac{\left(a+b\right)+\left(a-b\right)}{2}\) nên a chắc chắn là số hữu tỉ và do đó b cũng là số hữu tỉ
b. \(a=\frac{2\left(2a+b\right)+\left(3a-2b\right)}{7}\) nên a chắc chắn là số hữu tỉ và do đó b cũng là số hữu tỉ
Cho 2 số hữu tỉ a,b thỏa a3b +ab3 + 2a2b2 +2a +2b +1 =0. Chứng minh: 1-ab là bình phương của 1 số hữu tỉ.
Ta có a3b+ab3+2a2b2+2a+2b+1=0
<=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab
<=>(a+b+1)2=-ab(a+b)2-(a+b)2
<=>(a+b+1)2=(a+b)2(1-ab)
Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)
Nếu a+b khác 0:
Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ
=>1-ab là bình phương của một số hữu tỉ
=>đpcm
nhi tham khảo bài giải này nhé
Cho 2 số hữu tỉ a,b thỏa a3b +ab3 + 2a2b2 +2a +2b +1 =0. Chứng minh: 1-ab là bình phương của 1 số hữu tỉ
Cho 2 số hữu tỉ a,b thỏa a3b +ab3 + 2a2b2 +2a +2b +1 =0. Chứng minh: 1-ab là bình phương của 1 số hữu tỉ.
Ta có a3b+ab3+2a2b2+2a+2b+1=0
<=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab
<=>(a+b+1)2=-ab(a+b)2-(a+b)2
<=>(a+b+1)2=(a+b)2(1-ab)
Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)
Nếu a+b khác 0:
Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ
=>1-ab là bình phương của một số hữu tỉ
=>đpcm
Ta có a3b+ab3+2a2b2+2a+2b+1=0
<=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab
<=>(a+b+1)2=-ab(a+b)2-(a+b)2
<=>(a+b+1)2=(a+b)2(1-ab)
Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)
Nếu a+b khác 0:
Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ
=>1-ab là bình phương của một số hữu tỉ
=>đpcm