Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Alice Sophia
Xem chi tiết
Hoàng Thị Mai Hương
Xem chi tiết
Kiệt Nguyễn
12 tháng 6 2020 lúc 13:36

Vì abc = 1 nên \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)\(=\frac{ac}{abc+ac+c}+\frac{abc}{abc^2+abc+ac}+\frac{c}{ca+c+1}\)

\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\)(*)

Áp dụng bất đẳng thức Bunyakovsky dạng phân thức và áp dụng đẳng thức (*), ta được:

\(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\)\(=\frac{\left(\frac{a}{ab+a+1}\right)^2}{a}+\frac{\left(\frac{b}{bc+b+1}\right)^2}{b}+\frac{\left(\frac{c}{ca+c+1}\right)^2}{c}\)

\(\ge\frac{\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2}{a+b+c}=\frac{1}{a+b+c}\)

Đẳng thức xảy ra khi a = b = c = 1

Khách vãng lai đã xóa
Kẻ Huỷ Diệt
Xem chi tiết
sãkaya
23 tháng 5 2017 lúc 20:11

\(VT=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{\frac{a}{a+c}+\frac{b}{b+c}}{2}\)

Tượng tự ta có \(\hept{\begin{cases}\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}\\\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\le\frac{\frac{c}{b+c}+\frac{a}{a+b}}{2}\end{cases}}\)

\(\Rightarrow VT\le\frac{\left(\frac{a}{a+b}+\frac{b}{a+b}\right)+\left(\frac{c}{a+c}+\frac{a}{c+a}\right)+\left(\frac{c}{b+c}+\frac{b}{c+b}\right)}{2}\)

\(\Rightarrow VT\le\frac{\frac{a+b}{a+b}+\frac{c+a}{c+a}+\frac{b+c}{b+c}}{2}=\frac{3}{2}\) ( đpcm ) 

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)

Kẻ Huỷ Diệt
23 tháng 5 2017 lúc 20:17

cauchy - schwarz là bđt Cauchy à bạn

Phương Phươngg
23 tháng 5 2017 lúc 20:19

hihih ~ e mới lớp 8 ~ năm sau nha

Đoàn Thế Nhật
Xem chi tiết
Minh Triều
4 tháng 5 2016 lúc 18:04

có dư số 1 ko bạn

Quang Đẹp Trai
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
Nguyễn Thị Ngọc Thơ
10 tháng 11 2019 lúc 20:07

\(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{abc^2}{ab}}=2c\)

Tương tự và cộng lại có đpcm

Dấu "=" xảy ra khi \(a=b=c\) hay tam giác đều

Khách vãng lai đã xóa
hoàng trang
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 8 2020 lúc 17:34

\(VT\le\frac{1}{2\sqrt{a^2bc}}+\frac{1}{2\sqrt{b^2ac}}+\frac{1}{2\sqrt{c^2ab}}=\frac{1}{2}\left(\frac{1}{\sqrt{ab.ac}}+\frac{1}{\sqrt{ab.bc}}+\frac{1}{\sqrt{ac.bc}}\right)\)

\(VT\le\frac{1}{4}\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}+\frac{1}{bc}\right)=\frac{1}{2}\left(\frac{a+b+c}{abc}\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

Nguyễn Việt Lâm
30 tháng 8 2020 lúc 22:24

Tất cả đều là BĐT Cô-si đó bạn:

\(a^2+bc\ge2\sqrt{a^2bc}\Rightarrow\frac{1}{a^2+bc}\le\frac{1}{2\sqrt{a^2bc}}\)

\(\frac{1}{\sqrt{ab.ac}}=\sqrt{\frac{1}{ab}}.\sqrt{\frac{1}{ac}}\le\frac{1}{2}\left(\frac{1}{ab}+\frac{1}{ac}\right)\) (chính là BĐT Cô-si dạng \(\sqrt{xy}\le\frac{1}{2}\left(x+y\right)\) thôi)

Đỗ Nhật Linh
Xem chi tiết
nguyen thi nhu quynh
28 tháng 12 2017 lúc 17:41

thế mà bảo toán lớp 1 

vũ tiền châu
29 tháng 12 2017 lúc 20:24

Áp dụng bđt bu nhi a, ta có \(M^2\le3\left(\frac{a}{b+c+2a}+...\right)\)

mà \(\frac{a}{b+c+2a}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)

tương tự, ta có \(M^2\le\frac{3}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{c}{c+b}\right)=\frac{9}{4}\)

=>\(M\le\frac{3}{2}\)

dấu = xảy ra <=> a=b=c

Đỗ Phương Hiền
29 tháng 12 2017 lúc 20:28

Ko phải toán lớp 1ak

kaama mema
Xem chi tiết