a) chứng minh tứ giác AHOI nội tiếp và AIH=2SAB
b) chứng minh SB.SC=SH.SO
c)chứng minh BH/BS=CH/CS
d) gọi D là giao điểm của SA và OI.chứng minh BD đi qua trung điểm của AH
giúp mình ý 2 câu a,câu c,d dc ko
Cho điểm A thuộc nửa đường tròn tâm O có đường kính BC sao cho: AB < AC (A khác B). Gọi H là hình chiếu của A trên BC và I là trung điểm của AC.Tiếp tuyến tại A của nửa đường tròn (O) cắt BC ở S.
a) chứng minh tứ giác AHOI nội tiếp và AIH=2SAB
b) chứng minh SB.SC=SH.SO
c)chứng minh BH/BS=CH/CS
d) gọi D là giao điểm của SA và OI.chứng minh BD đi qua trung điểm của AH
giúp mình ý 2 câu a,câu c,d dc ko
Trên nửa đường tròn tâm O đường kính AB lấy điểm C khác A sao cho AC<BC
Tiếp tuyến tại B và C của nửa đường tròn tâm O cắt nhau tại D.Đường thẳng AD cắt nửa đường tròn tại M khác A,BC cắt DO tại E
gọi H là hình chiếu của C trên AB CMR đường thẳng AD đi Qua trung điểm N của CH
p\s:mình đang cần gấp sáng mai nộp bài kiểm tra
Cho nửa đường tròn tâm O đường kính AB = 2R. Trên nửa đường tròn lấy điểm C (C khác A và B). Gọi D là giao điểm của đường thẳng BC với tiếp tuyến tại A của nửa đường tròn tâm O và I là trung điểm của AD a. Chứng minh BC.BD = 4R² b. Chứng minh IC là tiếp tuyến của nửa đường tròn tâm O c. Từ C kẻ CH vuông góc với AB (H thuộc AB) BI cắt CH tại K. Chứng minh K là trung điểm của CH.
cho nửa đường tròn (o) đường kính ab lấy điểm c khác a sao cho ac bé hơn bc.tiếp tuyến tại b và c của nửa đường tròn cắt nhau tại d.đường thẳng ad cắt nửa đường tròn ở m.(m khác a).bc cắt do tại e.c,gọi h là hình chiếu vuông góc của c trên ab.cm:ad đi qua trung điểm của ch
Cho nửa đường tròn (O) và đường kính AB=2R. Trên nửa đường tròn lấy C ( C khác A và B). Gọi D là giao điểm của đường thẳng BC với tiếp tuyến A của nửa đường tròn tâm O và I là trung điểm của AD.
Chứng minh BC.BD= 4R2Chứng minh IC là tiếp tuyến của nửa đường tròn tâm O.Từ C kẻ CH vuộng góc với AB( H thuộc AB), BI cắt CH tại K. Chứng minh K là trung điểm của CHCho nửa đường tròn (O) đường kính BC và 1 điểm A nằm trên đường tròn sao cho AB<AC . H là hình chiếu của A trên BC . Đường trtròn tâm H bán kính HA cắt AB tại D(D≠A) và cất AC tại E (E≠A) . Gọi K là hình chiếu của H lên AC và I là giao điểm của HK và AO . CMR
a) EI//BC
b) BECD nội tiếp
c) Khi A thay đổi trên (O) tâm của đt ngoại tiếp tứ giác BECD thuộc một đường tròn cố định
Cho nửa đường tròn tâm O đường kính BC. Điểm A thuộc cung BC (AB < AC). Tiếp tuyến tại A cắt đường thẳng BC tại I. Gọi H là hình chiếu của A trên BC. Chứng minh rằng:
a) AB là tia phân giác của IAH
b) IA ² = IB.IC
cho đường tròn tâm O bán kính AB bằng 2r không đổi điểm C thuộc nửa đường tròn khác A,B D là dao điểm của BC với tiếp tuyến tại A của nửa đường tròn tâm O và I là trung điểm AD a, AC vuông góc với DB b,BC×BD không đổi khi C chuyển động trên nửa đường tròn c,CM: IC là tiếp tuyến của nửa đường tròn tâm O
Cho nửa đường tròn tâm O đường kính AB và tiếp tuyến Ax (A là tiếp điểm, Ax nằm ở nửa mặt phẳng chứa nửa đường tròn bò là AB). Trên đoạn AB lấy điểm M (M khác A, M khác B), đường thẳng vuông góc với AB tại M cắt nửa đường tròn tâm O tại C, tia BC cắt Ax tại D. Gọi N là trung điểm của AD. Gọi H là giao điểm của ON và AC. Kẻ HE vuông góc với AN (E thuộc AN). Đường tròn đường kính NC cắt EC tại F. Chứng minh NF luôn đi qua 1 điểm cố định khi M di chuyển trên AB.