Những câu hỏi liên quan
Tiến Nguyễn Minh
Xem chi tiết
Vũ Tiến Manh
21 tháng 10 2019 lúc 22:19

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
HD Film
21 tháng 10 2019 lúc 22:26

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
HD Film
21 tháng 10 2019 lúc 22:35

4c, 

\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}=a+b+c-\frac{b^2}{b^2+1}-\frac{c^2}{c^2+1}-\frac{a^2}{a^2+1}+3--\frac{b^2}{b^2+1}-\frac{c^2}{c^2+1}-\frac{a^2}{a^2+1}\)\(\ge6-2\cdot\frac{\left(a+b+c\right)}{2}=3\)

Bình luận (0)
 Khách vãng lai đã xóa
Phúc Long Nguyễn
Xem chi tiết
where are you now
15 tháng 4 2017 lúc 12:41

bài này mình chịu

mình mới lớp 5

Bình luận (0)
kudo shinichi
15 tháng 4 2017 lúc 12:50

mình cũng thế 

tại sao bạn ko nghĩ

Bình luận (0)
Phương Phươngg
15 tháng 4 2017 lúc 12:52

e mứi có lp 7 ak

e k giúp đc rùi >.<

Bình luận (0)
Hoàng Tử Lớp Học
Xem chi tiết
Phạm Hồ Thanh Quang
Xem chi tiết
Thắng Nguyễn
1 tháng 7 2017 lúc 10:33

Lần sau đăng ít một thôi toàn bài dài :v, ko phải ko làm mà là ngại làm

a)Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{a}{2a+b+c}=\frac{a}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{b}{a+2b+c}\le\frac{1}{4}\left(\frac{b}{a+b}+\frac{b}{b+c}\right);\frac{c}{a+b+2c}\le\frac{1}{4}\left(\frac{c}{a+c}+\frac{c}{b+c}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le\frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{4}\)

Xảy ra khi \(a=b=c\)

b)Đặt \(THANG=abc\left(a^2+bc\right)\left(b^2+ac\right)\left(c^2+ab\right)>0\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{b+c}{a^2+bc}-\frac{c+a}{b^2+ac}-\frac{a+b}{a^2+ab}\)

\(=\frac{a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-b^4c^2a^2-c^4a^2b^2}{THANG}\)

\(=\frac{\left(a^2b^2-b^2c^2\right)^2+\left(b^2c^2-c^2a^2\right)+\left(c^2a^2-a^2b^2\right)^2}{2THANG}\ge0\) (Đúng)

Xảy ra khi \(a=b=c\)

c)Ta có:\(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}=\frac{ab\left(a-b\right)+ac\left(a-c\right)}{\left(b+c\right)\left(b^2+c^2\right)}\)

Và \(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}=\frac{bc\left(b-c\right)+ab\left(b-a\right)}{\left(c+a\right)\left(c^2+a^2\right)}\)

\(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}=\frac{ac\left(c-a\right)+bc\left(c-b\right)}{\left(b+a\right)\left(b^2+a^2\right)}\)

Cộng theo vế 3 đăng thức trên ta có:

\(VT-VP=Σ\left[\frac{ab\left(a-b\right)}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{ab\left(a-b\right)}{\left(a+c\right)\left(a^2+c^2\right)}\right]\)

\(=\left(a^2+b^2+c^2+ab+bc+ca\right)\cdotΣ\frac{ab\left(a-b\right)^2}{\left(b+c\right)\left(c+a\right)\left(b^2+c^2\right)\left(c^2+a^2\right)}\ge0\)

2 bài cuối full quy đồng mệt thật :v

Bình luận (0)
Alexandra
Xem chi tiết
Nguyễn Huy Tú
21 tháng 11 2016 lúc 20:15

Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có: \(\frac{a.b}{c.d}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\) (1)

\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2}{d^2}\) (2)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\) (3)

Từ (1), (2) và (3) suy ra \(\frac{a.b}{c.d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)

Bình luận (2)
T_Hoàng_Tử_T
21 tháng 11 2016 lúc 20:21

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)

ta có: \(\frac{a.b}{c.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\left(1\right)\)

\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+2ab+b^2}{c^2+2cd+d^2}=\frac{b^2.k^2+2b^2.k+b^2}{d^2.k^2+2d^2.k+d^2}=\frac{b^2}{d^2}\left(2\right)\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2}{d^2}\left(3\right)\)

từ 1,2 và 3 ta có điều phải chứng minh

Bình luận (0)
Nguyễn Quang Hùng
Xem chi tiết
Dũng Senpai
Xem chi tiết
Nguyễn Linh Chi
7 tháng 8 2019 lúc 18:44

Bạn ơi đề bài có điều kiện a, b, c không vậy. Hay là a, b, c bất kì?

Bình luận (0)
Dũng Senpai
7 tháng 8 2019 lúc 21:17

dạ a,b,c>0 ạ.em quên mất 

Bình luận (0)
Nguyễn Linh Chi
7 tháng 8 2019 lúc 21:39

Với a, b, c >0

\(\frac{abc}{a^3+b^3+c^3}+\frac{2}{3}\ge\frac{ab+bc+ac}{a^2+b^2+c^2}\) (1)

<=> \(1-\left(\frac{abc}{a^3+b^3+c^3}+\frac{2}{3}\right)\le1-\frac{ab+bc+ac}{a^2+b^2+c^2}\)

\(\Leftrightarrow\frac{1}{3}-\frac{abc}{a^3+b^3+c^3}\le\frac{a^2+b^2+c^2-ab-ac-bc}{a^2+b^2+c^2}\)

\(\Leftrightarrow\frac{a^3+b^3+c^3-3abc}{3\left(a^3+b^3+c^3\right)}\le\frac{a^2+b^2+c^2-ab-ac-bc}{a^2+b^2+c^2}\)

\(\Leftrightarrow\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)}{3\left(a^3+b^3+c^3\right)}\le\frac{a^2+b^2+c^2-ab-ac-bc}{a^2+b^2+c^2}\)

\(\Leftrightarrow\left(a^2+b^2+c^2-ab-ac-bc\right)\left(\frac{1}{a^2+b^2+c^2}-\frac{a+b+c}{3\left(a^3+b^3+c^3\right)}\right)\ge0\)(2)

Ta có: \(a^2+b^2+c^2-ab-ac-bc=\frac{1}{2}\left[\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\right]\ge0\)

Với a,b, c>0

(1) <=> \(\frac{1}{a^2+b^2+c^2}\ge\frac{a+b+c}{3\left(a^3+b^3+c^3\right)}\)

\(\Leftrightarrow3\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow2a^3+2b^3+2c^3-ab^2-ac^2-ba^2-bc^2-ca^2-cb^2\ge0\)

\(\Leftrightarrow a^2\left(a-b\right)+a^2\left(a-c\right)+b^2\left(b-a\right)+b^2\left(b-c\right)+c^2\left(c-a\right)+c^2\left(c-b\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2+\left(a+c\right)\left(a-c\right)^2\ge0\)Luôn đúng với mọi a, b, c dương

Vậy (1) đúng

"=" xảy ra <=> a=b=c

Bình luận (0)
*Nước_Mắm_Có_Gas*
Xem chi tiết
_ℛℴ✘_
29 tháng 10 2018 lúc 21:46

áp dụng dãy tỉ số = nhau ta có

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a-b}{c-d}=\frac{a+b}{c-d}\)

Ta xét

Vế 1  \(\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\frac{ab}{cd}\)( nhân cả tử mẫu lại với nhau )

Vế 2 : \(\frac{a-b}{c-d}=\frac{a+b}{c+d}\Rightarrow\frac{\left(a-b\right)\left(a+b\right)}{\left(c-d\right)\left(c+d\right)}=\frac{a^2-b^2}{c^2-d^2}\) ( nhân cả tử cả  mẫu với nhau )

Mà Vế 1 = vế 2

=> \(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\left(đpcm\right)\)

Bình luận (0)
nguyen mai han
29 tháng 10 2018 lúc 21:48

đợi tui tí dược ko

Bình luận (0)
Lê Thảo Vy
Xem chi tiết
Nguyễn Quang Huy
15 tháng 10 2017 lúc 20:15

dễ ợt mày ngu thế

Bình luận (0)