nếu 1-1/2 x 1-1/3 x .....x 1- 1/2014 x1 -1/2015 x a =1 thì a
a, x+1/2013+x+1/2014+x+1/2015=x+1/2016+x+1/2017
b,x-1/2013+x-2/2014+x-3/2015=x-4/2016-2
tính nhanh
a) (1-1/2)x(1-1/3)x(1-1/4)x...x(1-1/2014)x(1-1/2015).
b) 1/2 +1/4+1/8+...+1/256.
c)5/2+5/4+5/8+...+5/256
d)14,35+(13,7-13,6)x1
a.\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2015}\right)=\frac{1}{2}.\frac{2}{3}...\frac{2014}{2015}=\frac{1.2.3...2014}{2.3...2015}=\frac{1}{2015}\)
b.\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{128}-\frac{1}{256}=1-\frac{1}{256}=\frac{255}{256}\)
c.\(\frac{5}{2}+\frac{5}{4}+\frac{5}{8}+...+\frac{5}{256}=5\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\right)=5.\frac{255}{256}=\frac{1275}{256}\)
d.14,35+(13,7-13,6).1=14,35+0,1.1=14,35+0,1=14,45
a = (1 -1/2) x (1-1/3) x (1-1/4) x...x(1-1/2014) x(1-1/2015) = ?
A = \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2015}\right)\)
A = \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2014}{2015}\)
A = \(\frac{1}{2015}\)
a = (1 -1/2) x (1-1/3) x (1-1/4) x...x(1-1/2014) x(1-1/2015) = ?
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\cdot...\cdot\left(1-\frac{1}{2015}\right)=\frac{1}{2}\cdot\frac{2}{3}\cdot...\cdot\frac{2014}{2015}=\frac{1\cdot2\cdot3\cdot...\cdot2014}{2\cdot3\cdot...\cdot2014\cdot2015}=\frac{1}{2015}\)
tính bằng cách thuận tiện nếu có thể: ( 2013 x 2014 + 2014 x 2015 + 2015 x 2016) x ( 1 + 1/3 - 4/3)
( 2013 x 2014 + 2014 x 2015 + 2015 x 2016) x ( 1 + 1/3 - 4/3)
=( 2013 x 2014 + 2014 x 2015 + 2015 x 2016) x ( 4/3 - 4/3)
=( 2013 x 2014 + 2014 x 2015 + 2015 x 2016) x 0
=0
Ta có: \(\left(2013\cdot2014+2014\cdot2015+2015\cdot2016\right)\left(1+\dfrac{1}{3}-\dfrac{4}{3}\right)\)
\(=\left(2013\cdot2014+2014\cdot2015+2015\cdot2016\right)\left(\dfrac{3}{3}+\dfrac{1}{3}-\dfrac{4}{3}\right)\)
=0
A = 1/1 x 2 + 1/2 x 3 + 1/3 x 4 +...+ 1/2014 x 2015
A = ?
/ có nghĩa là phần
A = 1/1.2 + 1/2.3 + 1/3.4 +.....+1/2014.2015
A = 1/1+( -1/2 + 1/2)+ (-1/3 +1/3) +( -1/4 + 1/4)+ -1/5 +............... 1/2014 + -1/ 2015
A = 1/1 + -1 /2015
A = 2015/2015 + -1 /2015 = 2014/2015.
BÀi giải
A= 1/1 x 2+ 1/2 x 3+1/3 x 4 +........+ 1/2014 x 2015
A= 1/1 - 1/2 + 1/2 - 1/3 +1/3 - 1/4 + 1/4 -........+ 1/2014 - 1/2015
A= 1/1 - 1/2015
A=2015/2015 - 1/2015
A= 2014/2015
so sánh A= 1/1 x 2 x 3 + 1/2 x 3 x 4 + 1/3 x 4 x 5 + ...+ 1/ 2014 x 2015 x 2016 với 1/4
2A=2/1.2.3 + 2/2.3.4 + 2/3.4.5 + ...+2/2014.2015.2016
Ta có: 2/1.2.3=1/1.2-1/2.3; 2/2.3.4=1/2.3-1/3.4; 2/3.4.5=1/3.4-1/4.5; ....; 2/2014.2015.2016=1/2014.2015-1/2015.2016
=> 2A=1/1.2-1/2015.2016
=> 2A < 1/2 => A < 1/4
a = (1 -1/2) x (1-1/3) x (1-1/4) x...x(1-1/2014) x(1-1/2015) = ?
cơ hội hiếm
tìm x biết (1+1/2+1/3+1/4+.........+1/2013)x+2013=2014/1+2015/2+2016/3+.........+4026/2013
giúp mik vs
nếu đầu bài sai thì sửa hộ mik luôn nha
phạm ngọc anh
bạn xét từng vế là ra đáp án ngay