Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Cao Vỹ Lượng
Xem chi tiết
Wall HaiAnh
8 tháng 4 2018 lúc 20:41

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

\(\Rightarrow A=1+\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)

Đặt \(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

\(2B=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2012}}\right)\)

\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)

\(2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)

\(B=1-\frac{1}{2^{2012}}\)

\(\Rightarrow A=1+\left(1-\frac{1}{2^{2012}}\right)\)

\(\Rightarrow A=2-\frac{1}{2^{2012}}\)

Takitori
Xem chi tiết
Nguyễn Bảo Ngọc
11 tháng 5 2019 lúc 14:22

đúng rùi đó

zZz Cool Kid_new zZz
11 tháng 5 2019 lúc 15:52

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2012}}\)

\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2011}}\)

\(A=2-\frac{1}{2^{2012}}\)

sakủa
Xem chi tiết
Kaori Miyazono
13 tháng 4 2017 lúc 11:58

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

Nên \(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)

Suy ra \(2A-A=2-\frac{1}{2^{2012}}\)hay \(A=2-\frac{1}{2^{2012}}\)

        Vậy \(A=2-\frac{1}{2^{2012}}\)

Aquarius Love
13 tháng 4 2017 lúc 12:01

\(\frac{1}{2}A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\)

=>\(A-\frac{1}{2}A=\left(1+\frac{1}{2}+..+\frac{1}{2^{2012}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\right)\)

=>\(\frac{1}{2}A=1-\frac{1}{2^{2013}}\)

=>\(A=2-\frac{1}{2^{2012}}\)

Cô mình chữa bài này rồi nên bạn cứ yên tâm

Nguyễn Thị Hương
Xem chi tiết
Kudo Sinichi
Xem chi tiết
Thắng Nguyễn
17 tháng 5 2016 lúc 20:59

\(2A=2\left(1+\frac{1}{2}+...+\frac{1}{2^{2012}}\right)\)

\(2A=2+1+...+\frac{2}{2^{2011}}\)

\(2A-A=\left(2+1+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{2012}}\right)\)

\(A=2-\frac{1}{2^{2012}}\)

l҉o҉n҉g҉ d҉z҉
17 tháng 5 2016 lúc 21:18

Ta có: \(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2012}}\)

=>  \(2A=2\left(1+\frac{1}{2}+...+\frac{1}{2^{2012}}\right)\)

=>  \(2A=2+1+...+\frac{2}{2^{2011}}\)

=> \(2A-A=\left(2+1+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{2012}}\right)\)

=> \(A=2-\frac{1}{2012}\)

Bùi Đình Bảo
Xem chi tiết
Đức Nguyễn Ngọc
8 tháng 4 2016 lúc 10:01

Xét mẫu số ta có: \(2012+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}\) 

=\(2012+\left(\frac{2014-2}{2}+\frac{2014-3}{3}+...+\frac{2014-2013}{2013}\right)\) 

\(2012+\left(\frac{2014}{2}+\frac{2014}{3}+\frac{2014}{4}+...+\frac{2014}{2013}\right)-\left(\frac{2}{2}+\frac{3}{3}+\frac{4}{4}+...+\frac{2013}{2013}\right)\) 

\(2012+2014\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)-2012\) 

\(2014\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)\) 

\(\Rightarrow A=\frac{1}{2014}\)

Hồ Lê Hằng Nga
Xem chi tiết
N
2 tháng 5 2016 lúc 20:33

A= 1+ 1/2 + 1/22 + ... + 1/22012 

﴾1/2﴿A= 1/2+1/22+...+1/22013

A‐﴾1/2﴿A= ﴾1+ 1/2 + 1/22 + ... + 1/22012 ﴿ ‐ ﴾ 1/2+1/22+...+1/22013 ﴿

﴾1/2﴿A = 1 ‐ 1/22013 

A= ﴾1‐ 1/22013 ﴿ : 1/2

A= 2 ‐ 1/22012

Trần Linh Trang
Xem chi tiết
Trần Đức Thắng
12 tháng 8 2015 lúc 9:16

Đặt A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)

2A = \(2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\)

2A - A = \(2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}-1-\frac{1}{2}-..-\frac{1}{2^{2011}}-\frac{1}{2^{2012}}\)

A     = \(2-\frac{1}{2^{2012}}=\frac{2^{2013}-1}{2^{2012}}\)

Lung Linh
Xem chi tiết
Thắng Nguyễn
1 tháng 5 2016 lúc 11:39

\(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)\)

\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)

\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)\)

\(A=2-\frac{1}{2^{2012}}\)

mk nhanh nhat nhe

Đỗ Thanh Thảo
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
19 tháng 5 2015 lúc 5:51

\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)

\(=2-1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2^2}+...+\frac{1}{2^{2011}}-\frac{1}{2^{2012}}=2-\frac{1}{2^{2012}}\)