chứng tỏ rằng 41/2.42/2...80/2=1.3.55...79
Chứng tỏ rằng: 1/41+1/42+1/43+...+1/79+1/80>7/12
chứng tỏ rằng :1 /41 +1/42 +1/43 +...+1/79+1/80 >7/12
Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12
=> ĐPCM
tk nha mk trả lời đầu tiên đó!!!
chứng tỏ rằng : 1/41 + 1/42+ 1/43+...............+ 1/79+ 1/80 >7/12
??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
Chứng tỏ rằng : 7/12 < 1/41 + 1/42 +...+1/79+1/80<5/6
Ta có:
1/41 + 1/42 + .....+1/60 < 1/40 . 20 = 1/2
1/61 + 1/62 +.......+1/80 < 1/60 . 20 = 1/3
=> 1/41 + 1/42 +.....+1/79 + 1/80 < 1/2 + 1/3 = 5/6
1/41 + 1/42 +...+1/60 > 1/60 . 20 = 1/3
1/61 + 1/62 +....+ 1/80 > 1/80 . 20 = 1/4
=> 1/41 + 1/42 +.......+ 1/79 + 1/80 > 1/3 + 1/4 = 7/12
KL: Vậy 7/12 < 1/41 + 1/42 +.....+ 1/80 < 5/6 (đpcm)
chứng tỏ rằng:
1/41+1/42+1/43+.....+1/79+1/80>7/12
Chứng tỏ rằng : 7/12 <1/41 +1/42 + 1/43 + 1/44 + ..... +1/79 +1/80 <1
a, cho A = 9999931999 - 5555571997
Chứng minh rằng A chia hết cho 5
b, Chứng tỏ rằng :
\(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+....+\dfrac{1}{79}+\dfrac{1}{80}\) >\(\dfrac{7}{12}\)
Ta có:
A=9999931999−5555571997
A=9999931998.999993−5555571996.555557
A=(9999932)999.999993 − (5555572)998.555557
A=\(\overline{\left(....9\right)}^{999}\) . 999993 - \(\overline{\left(...1\right)}.\text{555557}\)
A=\(\overline{\left(...7\right)}-\overline{\left(...7\right)}\)
A= \(\overline{\left(...0\right)}\)
Vì A có tận cùng là 0 nên \(A⋮5\)
Hãy chứng tỏ rằng:
a) 1/41+1/42+1/43+...+1/79+1/80>7/12
b)11/15<1/21+1/22+1/23+...+1/59+1/60<3/2
Bài 1: Chứng minh rằng tổng sau chia hết cho 7: A= 2^1 + 2^2 + 2^3 + 2^4 + ... + 2^59 + 2^60
Bài 2: a) Cho A= 999993^1999 - 555557^1997. Chứng minh rằng A chia hết cho 5
b) Chứng tỏ rằng: 1/41 + 1/42 + 1/43 + ... + 1/79 + 1/80 > 7/12
Bài 3: Chứng tỏ rằng: 2x + 3y chia hết cho 17 <=> 9x + 5y chia hết cho 17
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
cho mình hỏi nhờ cũng cái đề bài này nhưng chia hết cho 37 làm thế nào