Tìm x biết : 99x+1/99+98x+1/98+97x+1/97-1/99-1/98-1/97
a) Cho đa thức P(x)=ax^2+b - 5
Tìm a,b biết: P(0) = và P(1)=3
b) cho đa thức f(x) =99x + 98x^2 + 97^3 + .....+ 2x^98 + x^99 + 1
tính f(-1)
1.
Cho P(x)=100x100+99x99+98x98+...+2x2+x
Tính P(1)
2.
P(x)=x99-100x98+100x97+100x96+...+100x-1
Tính P(99)
Câu 2 tham khảo tại
Câu hỏi của Hang Le - Toán lớp 7 | Học trực tuyến
Học tốt!!!!
Mk có ý kiến giống thoi
Kết quả tìm kiếm | Học trực tuyến - H.vn
Mk tên ai l** l**n????
Tính f(-1)
f(x) = 99x + 98x2 + 97x3 +...+ 2x98 + x99 + 1
nếu thay x = -1
ta có:
-99 + 98 - 97 + ... + 2 - 1 + 1
= -99 + 98 - 97 + ...+ 2
= (98 - 99) + (96 - 97)+...+(2 - 3)
= -1 - 1 - 1 - 1 - 1 -...-1
= -49
F(x)= 99x \(98x^2+97x^3+96x^4+...+2x^{98}+x^{99}+1\)
G(x)=1+x-\(x^2-x^3+x^4+x^5-x^6-x^7+x^8+...+x^{100}\)
Tính F(1) + G(-1)
Tính F(x) + G(x)
Bài 2.cho P(x)=100x^100+ 99x^99+ 98x^98+.....+ 2x^2+x. Tính P(1)
P(1)=100+99+...+2+1=\(\frac{100\left(100+1\right)}{2}=5050\)
thay x=1
ta có F(1)=100.1^100+99.1^99+98.1^98+...+2.1^2+1
=100+99+98+...+1
=1+2+..+98+99+100
=(100+1).100:2=5050
=>F(x)=5050
Tính \(T=\left(\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}\right)X\left(\frac{1}{99}+\frac{2}{98}+...+\frac{98}{2}\right)-\left(\frac{1}{99}+\frac{2}{98}+..+\frac{99}{1}\right)X\left(\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}\right)\)
cho T = 1/2 + 1/3 + 1/4 +....+ 1/99 + 1/100 và M = 1/99 + 2/98 + 3/97 + ...+ 97/3 + 98/2 +99/1
hãy tìm tỉ số T/M
\(\frac{T}{M}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\frac{1}{99}+\frac{2}{98}+...+\frac{98}{2}+\frac{99}{1}}\)
Xét M - 99 + 98 = \(\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}\)
\(\Leftrightarrow M-1=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)\)
\(\Rightarrow M=\frac{100}{100}+100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(\Rightarrow\frac{T}{M}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)}=\frac{1}{100}\)
Tính nhanh
1/100 - 1/ 100 . 99 - 1/99 . 98 - 1/ 97 .98 - 1/ 97 .98 - ..- 1/ 3.2 - 1/2.1
đề :
= 1/100 - (1 / 100.99 +1/99.98 + ...+ 1/3.2 +1/2.1 )
=1/100 - (1 /1.2 +1/ 2.3 +...+ 1/ 98.99 +1 / 99.100)
=1/100 -( 1- 1/ 2 +1/2 -1/3 +...+1/98 -1/99 +1/99 -1/100)
=1/100 - ( 1- 1/100)
=1/100 - 99 /100
= -98/100
= -49 /50
1+ 99/98 -98/97+ 1/97*98
\(1+\frac{99}{98}-\frac{98}{97}+\frac{1}{97.98}\)
\(=1+1+\frac{1}{98}-\left(1+\frac{1}{97}\right)+\frac{1}{97}-\frac{1}{98}\)
\(=1+1+\frac{1}{98}-1-\frac{1}{97}+\frac{1}{97}-\frac{1}{98}\)
\(=1+1-1\)
\(=1\)