Chứng tỏ rằng :
1\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}>\frac{25}{12}\)
Ai làm đúng và nhanh nhất mình tick cho nhé ! (:D)
Bài 1: chứng tỏ rằng:\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+\frac{9}{4^2.5^2}+...+\frac{39}{19^2.20^2}< 1\)1
Dấu chấm là nhân nha các bạn !
Ai làm nhanh nhất và đúng nhất mình sẽ tick cho người đó và kết bạn !
Làm đầy đủ và chi tiết nhé !
Ta có: \(\frac{3}{1^2.2^2}=\frac{3}{1.4}=1-\frac{1}{4}\); \(\frac{5}{2^2.3^2}=\frac{5}{4.9}=\frac{1}{4}-\frac{1}{9}\); \(\frac{7}{3^2.4^2}=\frac{7}{9.16}=\frac{1}{9}-\frac{1}{16}\); ...; \(\frac{39}{19^2.20^2}=\frac{39}{361.400}=\frac{1}{361}-\frac{1}{400}\)
Gọi tổng đó là A => A=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{361}-\frac{1}{400}\)
=> \(A=1-\frac{1}{400}=\frac{399}{400}< \frac{400}{400}=1\)
=> A < 1
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{200}}{\frac{1}{199}+\frac{2}{198}+...+\frac{198}{2}+\frac{199}{1}}\)
Giúp mình với bạn nào trả lời nhanh và chính xác nhất mình sẽ tích cho và hạn nộp trước 11h nhé
Để chiều mình làm cho
làm luôn đi bạn mình đang cần vội
MS=
\(\frac{1}{199}+\frac{2}{198}+...+\frac{198}{2}+199\)
=\(\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+...+\left(\frac{198}{2}+1\right)+1\)
=\(\frac{200}{199}+\frac{200}{198}+...+\frac{200}{2}+\frac{200}{200}\)
=\(200.\left(\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}+\frac{1}{200}\right)\)
= 200. TS
\(\Rightarrow\)Phân số đã cho = \(\frac{1}{200}\)
Chú ý: MS là mẫu, TS là tử
Chứng minh rằng:
\(B:\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{22}>\frac{1}{2}\)
Ai làm nhanh và đúng nhất mình cho 2 tích
MÌNH CẦN GẤP ;((
chứng tỏ rằng 1-\(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}+\frac{1}{200}\)
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{199}-\frac{1}{200}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{4}-....-\frac{1}{100}\)
\(=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)+\left(\frac{1}{101}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+.....+\frac{1}{199}+\frac{1}{200}\) (ĐPCM)
Ta có : 1 - 1/2 + 1/3 - 1/4 + ....- 1/200
= (1 + 1/3 + 1/5 + ....+ 1/199) - ( 1/2 + 1/4 + 1/6 + .... + 1/200)
= ( 1 + 1/3 +...+ 1/199) + (1/2 +1/4 + ...+ 1/200) - 2(1/2+1/4+...+ 1/200)
= (1+1/2+1/3+....+1/199 + 1/200) - (1 +1/2 +1/3 +....+1/100)
= 1/101 + 1/102+ 1/103 + .... + 1/200
chúc bạn học tốt!!!!!!!
Đặt A=\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2005.2006}\)
B=\(\frac{1}{1004.2006}+\frac{1}{1005.2006}+...+\frac{1}{2006.1004}\)
Chứng tỏ rằng \(\frac{A}{B}\in Z\)
Ai làm được nhanh và đúng tớ tick đúng nhé
Cho \( M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{45^2}. \) Chứng tỏ rằng M không phải là số tự nhiên.
Ai nhanh, đúng và đầy đủ nhất mk tick nha!
chứng tỏ\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
ai làm đúng mình tick cho
Gọi biểu thức phân số đó là A
Ta thấy
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
......................
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)
Ta có công thức : \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
Dựa vào công thức trên ta có
\(A< 1.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow A< 1.\left(1-\frac{1}{100}\right)\)
\(\Rightarrow A< \frac{99}{100}\)
Mà \(\frac{99}{100}< 1\)
\(A< \frac{99}{100}< 1\Rightarrow A< 1\Rightarrow dpcm\)
ủng hộ nha
ta có \(x^2=x.x\le\left(x-1\right)x\)\(\Rightarrow\frac{1}{x^2}< \frac{1}{\left(x-1\right)x}\)và\(\frac{1}{\left(x-1\right)x}=\frac{1}{x-1}-\frac{1}{x}\)Vậy ta có \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\)<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}=\)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)=1-\(\frac{1}{100}\le1\)
vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}< 1\left(đpcm\right)\)
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}}{\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{192}{2}+\frac{199}{1}}\)
Tính nhanh giúp mình nha ! NHANH HẾT MỨC CÓ THỂ NHÉ
Chứng tỏ rằng : \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}+\frac{1}{200}\)