Cho C =1/31 + 1/32 + ....+ 1/60 so sánh C và 4/5
So sánh C = 1/31+1/32+1/33+...+1/60 và 4/5
So sánh M=1/31+1/32+1/33+...+1/60 và 4/5
cho tổng A = 1/31 + 1/32 + 1/33 + ..... + 1/59 + 1/60 . hãy so sánh A với 4/5
\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)
So sánh S và 4/5
ớ chết, mk nhầm, lm lại nha
\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)
\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(S< \frac{1}{30}.10+\frac{1}{40}.10+\frac{1}{50}.10\)
\(S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}< \frac{4}{5}\)
=> \(S< \frac{4}{5}\)
\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)
\(S< 30.\frac{1}{60}\)
\(S< \frac{1}{2}< \frac{4}{5}\)
\(S< \frac{4}{5}\)
\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)
\(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(\Rightarrow S< \frac{1}{30}.10+\frac{1}{40}.10+\frac{1}{50}.10\)
\(S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}< \frac{4}{5}\)
\(V\text{ậy}:S< \frac{4}{5}\)
Cho E =1/31+1/32+1/33+...+1/60
So sánh E với 4/5
Bác nào làm được thì giúp em với mai thi rùi
(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)(1/51 +1/52+ 1/53 +1/54+ 1/55 +1/56+ 1/57 +1/58 + 1/59 +1/60)
E = 1/31+1/32+...+1/60
E > 1/40+1/40+...+1/40+1/41+1/42+...+1/60
E > 20/40+1/41+1/42+...+1/60
E > 1/2+1/60+1/60+...+1/60
E > 1/2 + 1/3 = 5/6
Mà 5/6 > 4/5
=> E > 4/5
cho tổng A = 1/31 + 1/32 + 1/33 + ....... + 1/59 + 1/60 . hãy so sánh A với 4/5
các bạn giải đầy đủ hộ mk nha
thank you
So sánh:
a) 1/31+1/32+...+1/60 và 1/2
b) 1/11+1/12+...+1/20 và 1/2
c) 1/10+1/11+...+1/99+1/100 và 1
So sánh : A = 1 . 3 . 5 .7 . ..... .59 và B = 31/2 . 32/2. ....... . 60/2
\(B=\frac{31}{2}.\frac{32}{2}.....\frac{60}{2}\)
\(B=\left(31.32.33....60\right).\frac{1.2.3....60}{2^{30.\left(1.2.3...30\right)}}\)
\(B=\left(1.3.5.....59\right).\frac{2.4.6.....60}{2.4.6....60}=1.3.5...59\)
=> \(B=A\)
So sánh
a, A= 10^11-1/10^12-1 và B= 10^10+1/10^11+1
b, A= -9/10^2010+-19/10^2011 và B = -9/10^2011+-19/10^2010
c, M = 101^102+1/101^103+1 và N = 101^103+1/101^104+1
d, C= 1/31+1/32+...+1/60 và 4/5