Cho a và b nguyên tố cùng nhau. Chứng minh 5a+3b và 13a+8b cũng nguyên tố cùng nhau
1.Cho A=2n-1; B=n(n-1) Chứng minh rằng A và B nguyên tố cùng nhau
2. Cho A và B là 2 số nguyên tố cùng nhau.
Chứng minh A=5a+3b và B=13a+8b là 2 số nguyên tố cùng nhau
a) Chứng minh rằng : 21n+4 và 14 và n+3 nguyên tố cùng nhau
b) Chứng minh rằng nếu a và b là các số tự nhiên sao cho 5a+3b và 13a+8b cùng chia hết cho 2002 thì a và b cũng chia hết cho 2002
a) Cho a, b ∈ N. Chứng minh nếu (5a + 3b) và (13a + 8b) cùng chia hết cho 2018 thì a và
b cũng chia hết cho 2018.
b) Cho a, b ∈ N* thỏa mãn M = (9a + 11b).(5a + 11a) ⋮ 19. Chứng minh M ⋮ 361.
Bài 3: Cho p, q là các số nguyên tố lớn hơn 5. Chứng minh p4 + 2019.q4 ⋮ 20.
Bài 4: Tìm số tự nhiên a nhỏ nhất sao cho (a + 1) chia hết cho 2, a chia hết cho tích hai số
nguyên tố liên tiếp và tích 2023a là số chính phương
Bài 3: p,q là các số nguyên tố lớn hơn 5
=>p,q là các số lẻ
=>p=2a+1; q=2b+1
\(p^4-q^4\)
\(=\left(2a+1\right)^4-\left(2b+1\right)^4\)
\(=\left\lbrack\left(2a+1\right)^2-\left(2b+1\right)^2\right\rbrack\left\lbrack\left(2a+1\right)^2+\left(2b+1\right)^2\right\rbrack\)
\(=\left\lbrack4a^2+4a-4b^2-4b\right\rbrack\left\lbrack\left(2a+1\right)^2+\left(2b+1\right)^2\right\rbrack\)
\(=4\left(a^2-b^2+a-b\right)\left\lbrack\left(2a+1\right)^2+\left(2b+1\right)^2\right\rbrack\) ⋮4
=>\(p^4-q^4+2020q^4\) ⋮4
=>\(p^4+2019q^4\) ⋮4(2)
p,q là các số nguyên tố lớn hơn 5
mà p,q là các số lẻ
nên p,q chỉ có thể có tận cùng là 1;3;7;9
=>\(p^4;q^4\) đều có tận cùng là 1
=>\(p^4-q^4\) ⋮10
=>\(p^4-q^4+2020q^4\) ⋮10
=>\(p^4+2019q^4\) ⋮10(1)
Từ (1),(2) suy ra \(p^4+2019q^4\) ∈BC(4;10)
=>\(p^4+2019q^4\) ⋮20
Bài 2:
a: 5a+3b⋮2018
=>13(5a+3b)⋮2018
=>65a+39b⋮2018
13a+8b⋮2018
=>5(13a+8b)⋮2018
=>65a+40b⋮2018
mà 65a+39b⋮2018
nên 65a+40b-65a-39b⋮2018
=>b⋮2018
5a+3b⋮2018
=>8(5a+3b)⋮2018
=>40a+24b⋮2018
13a+8b⋮2018
=>3(13a+8b)⋮2018
=>39a+24b⋮2018
mà 40a+24b⋮2018
nên 40a+24b-39a-24b⋮2018
=>a⋮2018
b:
Sửa đề: M=(9a+11b)(5b+11a)
Vì 19 là số nguyên tố
nên một trong hai số 9a+11b hoặc 5b+11a sẽ chia hết cho 19
TH1: 9a+11b⋮19
=>3(9a+11b)⋮19
=>27a+33b⋮19(2)
Ta có: 3(9a+11b)+5b+11a
=27a+33b+5b+11a
=38a+38b=38(a+b)⋮19(1)
Từ (1),(2) suy ra 5b+11a⋮19
=>(9a+11b)(5b+11a)⋮19*19
=>M⋮361
TH2: 11a+5b⋮19
=>38a+38b-11a-5b⋮19
=>27a+33b⋮19
=>3(9a+11b)⋮19
=>9a+11b⋮19
=>(9a+11b)(11a+5b)⋮19*19
=>M⋮361
vậy: M⋮361
a, Cho a và b là 2 số nguyên tố cùng nhau . Hãy tìm ƯCLN của 5a + 3b và 13a + 8b
b, cho a/b là phân số tối giản . Hãy chứng tỏ rằng phân số 3a+2b / 5a+3b tối giản
cho a,b là hai số nguyên tố cùng nhau . Chứng tỏ rằng 5a + 2b và 7a + 3b cũng là hai số nguyên tố cùng nhau
Cho a và b là hai số nguyên tố cùng nhau.Chứng minh 8a+3b và 5a+2b cũng là hai số nguyên tố cùng nhau
Gọi d là ƯC (8a+3b;5a+2b)
Ta có 8a+3b \(⋮\)d ; 5a+2b\(⋮\)d
=> 8a+3b-5a+2b\(⋮\)d
=> 2(8a+3b)-3(5a+2b)\(⋮\)d
=>16a+6b-15a+6b\(⋮\)d
=>1a \(⋮\)d
Vậy d=1 nên 8a+3b và 5a+2b cũng là 2 số nguyên tô cùng nhau
Cho a và b là hai số nguyên tố cùng nhau.Chứng minh 8a+3b và 5a+2b cũng là hai số nguyên tố cùng nhau
Ta có: 8a+3b\(⋮d\)
5a+2b\(⋮d\)\(\)\(\Rightarrow\hept{\begin{cases}40a+15b⋮d\\40a+16b⋮d\end{cases}}\)\(\Rightarrow\left(40a+16b\right)-\left(40a+15b\right)⋮d\)
\(\Rightarrow b⋮d\)
Mà a và b là hai số nguyên tố cùng nhau \(\Rightarrow d=1\)
Vậy 8a+3b và 5a+2b cũng là hai số nguyên tố cùng nhau
Ta có d là ƯC(8a+3b;5a+2b)
Mà \(8a+3b⋮d;5a+2b⋮d\)
Nên 8a+3b-5a+2b
\(\Rightarrow2\left(8a+3b\right)-3\left(5a+2b\right)⋮d\)
\(\Leftrightarrow1⋮d\)
Vậy...
Cho a và b là hai số nguyên tố cùng nhau.Chứng minh 8a+3b và 5a+2b cũng là hai số nguyên tố cùng nhau
Gọi (8a+3b; 5a+2b) = d
Ta có: 8a + 3b \(⋮d\)
5a + 2b \(⋮d\)
Xét hiệu: 8(5a + 2b) - 5(8a + 3b) \(⋮d\)
\(\Leftrightarrow\)40a + 16b - 40a - 15b \(⋮d\)
\(\Leftrightarrow\)b \(⋮d\) (1)
2(8a + 3b) - 3(5a + 2b) \(⋮d\)
\(\Leftrightarrow\)16a + 6b - 15a - 6b \(⋮d\)
\(\Leftrightarrow\)a \(⋮d\) (2)
Từ (1) và (2) suy ra d \(\inƯC\left(a,b\right)\)
mà a và b là 2 số nguyên tố cùng nhau
nên d = 1
\(\Rightarrow\)8a + 3b và 5a + 2b cũng là 2 số nguyên tố cùng nhau
Cho a và b là hai số nguyên tố cùng nhau.Chứng minh 8a+3b và 5a+2b cũng là hai số nguyên tố cùng nhau
Để 8a + 3b và 5a + 2b là 2 số NTCN nên:
ƯCLN(8a + 3b, 5a + 2b)=1
ƯCLN(8a + 3b, 5a + 2b)
= UWCLN(3a + b, 5a + 2b)
= UWCLN(3a + b, 2a + b)
= UWCLN(a, 2a + b)
= UWCLN(a,a + b)
= UWCLN(a,b)
Vì a và b là 2 số NTCN, nên UWCLN(a,b)=1
=> UWCLN(8a+3b, 5a+2b)=1
Vây 8a+3b và 5a+2b là 2 số nguyên tố cùng nhau nếu a và b là 2 số NTCN
Xin lỗi, UWCLN thay bằng ƯCLN nhé!
Xin trân trọng cảm ơn -_-
Gọi d là ƯC(8a+3b;5a+2b)
\(\Rightarrow\hept{\begin{cases}8a+3b⋮d\\5a+2b⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5\left(8a+3b\right)⋮d\\8\left(5a+2b\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}40a+15b⋮d\\40a+16b⋮d\end{cases}}\)
\(\Rightarrow\left(40a+16b\right)-\left(40a+15b\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(8a+3b;5a+2b\right)=1\)
Vậy 8a+3b và 5a+2b cũng là hai số nguyên tố cùng nhau