Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trúc Quỳnh
Xem chi tiết
Lại Vũ  Anh
20 tháng 12 2022 lúc 21:08

Hi

 

gái ma kết
Xem chi tiết
Đức Anh nguyễn
Xem chi tiết

Bài 3: p,q là các số nguyên tố lớn hơn 5

=>p,q là các số lẻ

=>p=2a+1; q=2b+1

\(p^4-q^4\)

\(=\left(2a+1\right)^4-\left(2b+1\right)^4\)

\(=\left\lbrack\left(2a+1\right)^2-\left(2b+1\right)^2\right\rbrack\left\lbrack\left(2a+1\right)^2+\left(2b+1\right)^2\right\rbrack\)

\(=\left\lbrack4a^2+4a-4b^2-4b\right\rbrack\left\lbrack\left(2a+1\right)^2+\left(2b+1\right)^2\right\rbrack\)

\(=4\left(a^2-b^2+a-b\right)\left\lbrack\left(2a+1\right)^2+\left(2b+1\right)^2\right\rbrack\) ⋮4

=>\(p^4-q^4+2020q^4\) ⋮4

=>\(p^4+2019q^4\) ⋮4(2)

p,q là các số nguyên tố lớn hơn 5

mà p,q là các số lẻ

nên p,q chỉ có thể có tận cùng là 1;3;7;9

=>\(p^4;q^4\) đều có tận cùng là 1

=>\(p^4-q^4\) ⋮10

=>\(p^4-q^4+2020q^4\) ⋮10

=>\(p^4+2019q^4\) ⋮10(1)

Từ (1),(2) suy ra \(p^4+2019q^4\) ∈BC(4;10)

=>\(p^4+2019q^4\) ⋮20


Bài 2:

a: 5a+3b⋮2018

=>13(5a+3b)⋮2018

=>65a+39b⋮2018

13a+8b⋮2018

=>5(13a+8b)⋮2018

=>65a+40b⋮2018

mà 65a+39b⋮2018

nên 65a+40b-65a-39b⋮2018

=>b⋮2018

5a+3b⋮2018

=>8(5a+3b)⋮2018

=>40a+24b⋮2018

13a+8b⋮2018

=>3(13a+8b)⋮2018

=>39a+24b⋮2018

mà 40a+24b⋮2018

nên 40a+24b-39a-24b⋮2018

=>a⋮2018

b:

Sửa đề: M=(9a+11b)(5b+11a)

Vì 19 là số nguyên tố

nên một trong hai số 9a+11b hoặc 5b+11a sẽ chia hết cho 19

TH1: 9a+11b⋮19

=>3(9a+11b)⋮19

=>27a+33b⋮19(2)

Ta có: 3(9a+11b)+5b+11a

=27a+33b+5b+11a

=38a+38b=38(a+b)⋮19(1)

Từ (1),(2) suy ra 5b+11a⋮19

=>(9a+11b)(5b+11a)⋮19*19

=>M⋮361

TH2: 11a+5b⋮19

=>38a+38b-11a-5b⋮19

=>27a+33b⋮19

=>3(9a+11b)⋮19

=>9a+11b⋮19

=>(9a+11b)(11a+5b)⋮19*19

=>M⋮361

vậy: M⋮361


Trân Thi Nguyêt Ánh
Xem chi tiết
chaubaopham
Xem chi tiết
Nguyễn Phương Nga
Xem chi tiết
❤Trang_Trang❤💋
25 tháng 12 2017 lúc 19:57

Gọi d là ƯC (8a+3b;5a+2b)

Ta có 8a+3b \(⋮\)d ; 5a+2b\(⋮\)d

=> 8a+3b-5a+2b\(⋮\)d

=> 2(8a+3b)-3(5a+2b)\(⋮\)d

=>16a+6b-15a+6b\(⋮\)d

=>1a \(⋮\)d

Vậy d=1 nên 8a+3b và 5a+2b cũng là 2 số nguyên tô cùng nhau

le dieu vy
25 tháng 12 2017 lúc 20:14

a b c d 456m 114m 114m 114m 114m a b o 123 123 246

Nguyễn Phương Nga
Xem chi tiết
Bùi Hoàng Linh Chi
25 tháng 12 2017 lúc 20:47

Ta có: 8a+3b\(⋮d\)

5a+2b\(⋮d\)\(\)\(\Rightarrow\hept{\begin{cases}40a+15b⋮d\\40a+16b⋮d\end{cases}}\)\(\Rightarrow\left(40a+16b\right)-\left(40a+15b\right)⋮d\)

\(\Rightarrow b⋮d\)

Mà a và b là hai số nguyên tố cùng nhau \(\Rightarrow d=1\)

Vậy 8a+3b và 5a+2b cũng là hai số nguyên tố cùng nhau

Bùi Hoàng Linh Chi
25 tháng 12 2017 lúc 20:44

Gọi (8a+3b;5a+2b)=d(d\(\in\)N*)

Lê Anh Tú
25 tháng 12 2017 lúc 20:47

Ta có d là ƯC(8a+3b;5a+2b)

Mà \(8a+3b⋮d;5a+2b⋮d\)

Nên 8a+3b-5a+2b

\(\Rightarrow2\left(8a+3b\right)-3\left(5a+2b\right)⋮d\)

\(\Leftrightarrow1⋮d\)

Vậy...

Nguyễn Phương Nga
Xem chi tiết
Không Tên
25 tháng 12 2017 lúc 21:11

Gọi (8a+3b;  5a+2b) = d

Ta có:  8a + 3b  \(⋮d\)

            5a + 2b \(⋮d\)

Xét hiệu:  8(5a + 2b)  -  5(8a + 3b)  \(⋮d\)

\(\Leftrightarrow\)40a + 16b - 40a - 15b  \(⋮d\)

\(\Leftrightarrow\)\(⋮d\)          (1)

             2(8a + 3b) - 3(5a + 2b) \(⋮d\)

\(\Leftrightarrow\)16a + 6b - 15a - 6b  \(⋮d\)

\(\Leftrightarrow\)\(⋮d\)            (2)

Từ (1)  và  (2)  suy ra   d \(\inƯC\left(a,b\right)\)

mà a và b  là 2 số nguyên tố cùng nhau 

nên  d = 1

\(\Rightarrow\)8a + 3b  và  5a + 2b   cũng là 2 số nguyên tố cùng nhau

Nguyễn Phương Nga
Xem chi tiết
Bùi Đăng Dũng
25 tháng 12 2017 lúc 20:32

Để 8a + 3b và 5a + 2b là 2 số NTCN nên:

ƯCLN(8a + 3b, 5a + 2b)=1

ƯCLN(8a + 3b, 5a + 2b)

= UWCLN(3a + b, 5a + 2b)

= UWCLN(3a + b, 2a + b)

= UWCLN(a, 2a + b)

= UWCLN(a,a + b)

= UWCLN(a,b)

Vì a và b là 2 số NTCN, nên UWCLN(a,b)=1

                                             => UWCLN(8a+3b, 5a+2b)=1

Vây 8a+3b và 5a+2b là 2 số nguyên tố cùng nhau nếu a và b là 2 số NTCN

Bùi Đăng Dũng
25 tháng 12 2017 lúc 20:34

Xin lỗi, UWCLN thay bằng ƯCLN nhé!

Xin trân trọng cảm ơn -_-

Asuna Yuuki
25 tháng 12 2017 lúc 20:37

Gọi d là ƯC(8a+3b;5a+2b)

\(\Rightarrow\hept{\begin{cases}8a+3b⋮d\\5a+2b⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}5\left(8a+3b\right)⋮d\\8\left(5a+2b\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}40a+15b⋮d\\40a+16b⋮d\end{cases}}\)

\(\Rightarrow\left(40a+16b\right)-\left(40a+15b\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(8a+3b;5a+2b\right)=1\)

Vậy 8a+3b và 5a+2b cũng là hai số nguyên tố cùng nhau