Tìm 2 số nguyên tố p, q sao cho (5p - 2p)(5q - 2q) chia hết cho p.q
Tìm tất cả các số nguyên tố p,q sao cho 2p+q và p.q+1 đều là các số nguyên tố( dấu .là dấu nhân nhé ở chỗ p.q ấy)
Nếu p = 2 ; q = 1
=> 2 . 2 + 1 = 5
2 . 1 + 1 = 3
Nếu p, q chẵn => 3k + k chia hết cho 3 => hợp số ( loại )
nếu p chẵn , q lẻ => 2k . 3k + 1 = 6k + 1 ( nguyên tố ) thỏa mãn
=> p = 2 ; q= 1
ai bít Cao Phan Tuấn Anh thì tick nha vì em là em họ của anh ấy
Tìm tất cả các số nguyên tố p,q sao cho 2p+q và p.q+1 cũng là số nguyên tố
p.q + 1là số nguyên tố
Mà p.q + 1 > 3 => p .q + 1 lẻ => p.q chẵn
< = > p = 2 hoặc q = 2
Bạn liệt kê ra
a) Tìm các stn n sao cho 2n+15 chia hết cho n+3
b) Tìm số nguyên tố p và q sao cho 7p+q va p.q+11 là số nguyên tố
Tìm số nguyên tố p sao cho 2p+1 và 5p+2 cùng là số nguyên tố
2p + 1, 5p + 2 cùng là các số nguyên tố
Chỉ có một số đáp ứng là số 3 vì:
2x3+1=7
5x3+2=17
Mà 7 và 17 là số nguyên tố nên p=3
tìm các số nguyên tố p q sao cho p^q+q^p=(2p+q+1)(2q+p+1)
Ta có:
p2−2q2=1⇒p2=2q2p2−2q2=1⇒p2=2q2mà p lẻ. Đặt p = 2k + 1 (k là số tự nhiên)
Ta có:
(2k+1)2=2q2+1⇒q2+1=2k(k+1)⇒q=2(2k+1)2=2q2+1⇒q2+1=2k(k+1)⇒q=2(vì q là số nguyên tố) tìm được p = 3
Vậy: (p;q)∈{3;2}
chứng minh với mọi số nguyên dương n thì 3^n+1+4^n+2021^n không phải là số chính phương
Tìm số nguyên tố p sao cho 2p+1 và 5p + 2 cũng là số nguyên tố.
Với \(p=2\): \(5p+2=12\)không là số nguyên tố.
Với \(p=3\): \(2p+1=7,5p+2=17\)đều là số nguyên tố, thỏa mãn.
Với \(p>3\): khi đó \(p=3k+1\)hoặc \(p=3k+2\)với \(k\inℕ^∗\).
- \(p=3k+1\): \(2p+1=2\left(3k+1\right)+1=6k+3⋮3\)mà \(2p+1>3\)nên không là số nguyên tố.
- \(p=3k+2\): \(5p+2=5\left(3k+2\right)+2=15k+12⋮3\)mà \(5p+2>3\)nên không là số nguên tố.
Vậy \(p=3\).
Tìm số nguyên p sao cho 2p+1 và 5p+2 cũng là số nguyên tố.
giúp mk với
Giải thích các bước giải:
Trường hợp 1:p=21:p=2
→2p+1=2⋅2+1=5→2p+1=2⋅2+1=5 là số nguyên tố
2p+5=2⋅2+5=92p+5=2⋅2+5=9 không là số nguyên tố
→p=2→p=2 (loại)
Trường hợp 2:p=32:p=3
→2p+1=2⋅3+1=7→2p+1=2⋅3+1=7 là số nguyên tố
2p+5=2⋅3+5=112p+5=2⋅3+5=11 là số nguyên tố
→p=3→p=3 (chọn)
Trường hợp 3:p>33:p>3
→p→p chia 33 dư 11 hoặc 22
Nếu pp chia 33 dư 1→p=3k+1,k∈N∗1→p=3k+1,k∈N∗
→2p+1=2(3k+1)+1=6k+3=3(2k+1)⋮3→2p+1=2(3k+1)+1=6k+3=3(2k+1)⋮3
Mà 2p+1>3→2p+12p+1>3→2p+1 là hợp số
→p=3k+1→p=3k+1 (loại)
Nếu pp chia 33 dư 2→p=3k+2,k∈N∗2→p=3k+2,k∈N∗
→2p+5=2(3k+2)+5=6k+9=3(2k+3)⋮3→2p+5=2(3k+2)+5=6k+9=3(2k+3)⋮3
Mà 2p+5>3→2p+52p+5>3→2p+5 là hợp số
→p=3k+2→p=3k+2 (loại)
⇒p>3⇒p>3 loại
Với : không là số nguyên tố.
Với : đều là số nguyên tố, thỏa mãn.
Với : khi đó hoặc với .
- : mà nên không là số nguyên tố.
- : mà nên không là số nguên tố.
Vậy .
giải giúp mk 2 bài này nhé:
B1:Cho p,q là số tự nhiên lớn hơn 3.Chứng minh rằng:(p-q).(p+q) chia hết cho 24
B2:Tìm STN p,q sao cho 7.p+q và p.q+11 là số nguyên tố
Tìm các số nguyên tố p;q sao cho 7p+q và p.q+11 là số nguyên tố
nếu p=2 thì 14+q,2q+11 là số nguyên tố
nếu q chia 3 dư 1 thì 14+q chia hết cho 3
nếu q chia 3 dư 2 thì 2q+11 chia hết cho 3
từ đó suy ra q=3
nếu q=2 thì 7p+2 và 2p+11 là số nghuyên tố
tương tự trên ta có p=3