cho ΔABC ⊥ tại A đường cao AH , biết BC = 20 cm AH = 8 cm , lấy E và D là hình chiếu của H trên AB và AC
a, ADHE là hình gì ? chứng minh .
b. chứng minh ΔADE đồng dạng với ΔABC
c, tính diện tích ΔADE
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh: AB^2 = BH . BC b) Chứng minh: AH^2 = HB . HC c) Chứng minh tam giác AFE đồng dạng với tam giác ABC. d) Cho BC = 30 cm, AC = 12 cm, tính diện tích tam giác AEF
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh: AB^2 = BH . BC b) Chứng minh: AH^2 = HB . HC c) Chứng minh tam giác AFE đồng dạng với tam giác ABC. d) Cho BC = 30 cm, AC = 12 cm, tính diện tích tam giác AEF
cho tam giác ABC vuông tại A đường cao AH,BC = 20 cm, AH=8cm. Gọi D là hình chiếu của H trên AC, E là hình chiếu của h trên AB.
a) chứng minh rằng tam giác ADE đồng dạng với tam giác ABC.
b) Tính diện tích tam giác ADE
ABEH là hình chữ nhật ( có ba góc vuông)
\(\widehat{\Rightarrow AED}=\widehat{AHD}\)
mà \(\widehat{AHD}=\widehat{ACB}\)(cùng phụ với góc DHC)
\(\Rightarrow\Delta ADE\infty\Delta ABC\left(g.g\right)\)
Cho ΔABC vuông tại A, đường cao AH. Gọi D và E thứ tự là hình chiếu của H trên AB và AC. a) Chứng minh: AH=DE b) Chứng minh: AD. AB=AE. AC c) Biết AH=12cm; BH=9cm. Tính diện tích ABC. d) Gọi M là trung điểm của BC. Chứng minh DE vuông góc với AM
a, Xét tứ giác ADHE có :
^A = ^ADH = ^HEA = 900
Vậy tứ giác ADHE là hcn
Vậy AH = DE ( 2 đường chéo bằng nhau )
b, Xét tam giác AEH và tam giác AHC có :
^AEH = ^AHC = 900
^A _ chung
Vậy tam giác AEH ~ tam giác AHC ( g.g )
=> AH/AC = AE/AH => AH^2 = AE.AC (1)
tương tự với tam giác ADH ~ tam giác AHB (g.g)
=> AD/AH = AH/AB => AH^2=AD.AB (2)
Từ (1) ; (2) suy ra AE.AC = AD.AB
c, Xét tam giác ABH và tam giác CAH
^AHB = ^CHA = 900
^ABH = ^CAH ( cùng phụ ^BAH )
Vậy tam giác ABH ~ tam giác CAH (g.g)
=> AH/CH = BH/AH => AH^2 = BH.CH
=> CH = AH^2/BH = 144/9 = 16
=> BC = BH + CH = 25 cm
Diện tích tam giác ABC là : SABC = 1/2 . AH . BC
= 1/2 . 12 . 25 = 150 cm2
Câu 1 : Cho Tam Giác ABC ( A = 90 độ ) biết AB = 3 Cm , C = 30 độ . Tính AC , BC
Câu 2 : Cho Tam Giác ABC Vuông Tại A , Đường Cao AH . Biết HB = 9 Cm , HC=16Cm
a , Tính AB , Ac , Ah
b, Gọi D Và E Lần Lượt Là Hình Chiếu Vuông Góc Của H Trên AB Và AC . Tứ Giác ADHE Là Hình Gì ? Chứng Minh
c , Tính Chu Vi Và Diện Tích Của Tứ Giác Đó
Câu 3 : Cho Tam Giác ABC Vuông Tại A , Đường Cao AH , Biết BH = a , CH = b
Chứng Minh : Căn Bậc Hai Của ab bé hơn hoặc bằng a+b/2
ta có
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(a+b-2\sqrt{ab}\ge0\)
\(a+b\ge2\sqrt{ab}\)
\(\frac{a+b}{2}\ge\sqrt{ab}\)
Ta có AH2=CH.BH=ab (1)
Gọi M là trung điểm của BC.
Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)
Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)
Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)
Ở trên nhầm: AH2=ab\(\Rightarrow AH=\sqrt{ab}\)
Kết hợp (1), (2) và (3) \(\Rightarrow\sqrt{ab}\le\frac{a+b}{2}\)
CÂU 5 ; cho hình ΔABC = 8cm . AC= 12cm . Trên cạnh AB lấy điểm D sao cho BD=2cm , trên cạnh AC lấy điểm E sao cho AE = 9 cm
A, tính tỉ số \(\dfrac{AE}{AD}\);\(\dfrac{AD}{AC}\)
B, chứng minh ΔADE đồng dạng ΔABC
C, đường phân giác của BAC cắt BC tại I , chứng minh : IB . AE = IC.AD
a) Ta có : AD + DB = AB ( vì D nằm trên cạnh AB)
=> AD + 2 = 8
=> AD = 6cm
Do đó : ADAB=68=34����=68=34
AEAC=912=34����=912=34
=> ADAB=AEAC=34����=����=34
b) Xét ΔADEΔ��� và ΔABCΔ��� có :
ˆA�^ chung
ADAB=AEAC����=����
=> ΔADE∽ΔABC(c.g.c)Δ���∽Δ���(�.�.�)
c) Vì IA�� là đường phân giác của ΔABCΔ��� nên
=> ABAC=IBIC=812=23����=����=812=23
Mà ADAB=AEAC����=���� (ΔADE∽ΔABC(cmt))(Δ���∽Δ���(���)) ⇒ABAC=ADAE=23⇒����=����=23
=>IBIC=ADAE⇒IB⋅AE=IC⋅AD(đpcm)����=����⇒��⋅��=��⋅��(đ���)
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E theo thứ tự là hình chiếu vuông góc của H trên cạnh AB và AC
a) Tứ giác ADHE là hình gì? Vì sao?
b) Chứng minh tam giác AHD đồng dạng với tam giác ABH; tam giác ADE và tam giác ABC đồng dạng
c) Chứng minh diện tích tam giác ABC >= 4.diện tích tam giác ADE.
Cho tam giác ABC vuông tại A có AH là đường cao. Gọi D, E lần lượt là hình chiếu của H trên AB, AC.
a) Chứng minh ADHE là hình chữ nhật
b) Chứng minh tam giác AED đồng dạng tam giác ABC
c) Cho biết diện tính ABC= 2 diện tích ADHE. Chứng minh rằng tam giác ABC vuông cân tại A
Cho tam giác ABC vuông tại A vẽ đường cao AH, AB = 6 cm, AC = 8cm
a/ Chứng minh ∆HBA đồng dạng ∆ABC.
b/ Tính BC, AH, BH
c/ E và F là hình chiếu của H trên cạnh AB và AC chứng minh AE . EB + AF .FC = EF2
a, Xét tam giác HBA và tam giác ABC có
^B _ chung ; ^HBA = ^BAC = 900
Vậy tam giác HBA ~ tan giác ABC (g.g)
b, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=10cm\)
\(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{24}{5}cm\)
\(\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow BH=\dfrac{36}{10}=\dfrac{18}{5}cm\)
c, -bạn tự cm nhé
tam giác AEH ~ tam giác HEB (g.g)
\(\dfrac{AE}{HE}=\dfrac{HE}{BE}\Rightarrow HE^2=AE.BE\)
tam giác AFH ~ tam giác HFC (g.g)
\(\dfrac{AF}{HF}=\dfrac{FH}{FC}\Rightarrow FH^2=AF.FC\)
Cộng vế với vế ta được \(HE^2+FH^2=EF^2\)( theo định lí Pytago )