cho hình thang abcd có ac và bd cắt nhau tại o.biết sboc là 12cm2 và sdoc là 24 cm2
cho hình thang ABCD. AC cắt BD tại O biết SBOC =12cm2,SDOC=24cm2 . Tìm SABCD
.cho hình thang abcd có hai đáy ab và cd hai đường chéo ac và bd cắt nhau tại o.Biết diện tích AOB là 54 cm2. Tính diện tích hình thang ABCD
Cho hình thang ABCD có đáy AB = 1/3 CD.Có AC và BD cắt nhau tại O.Biết diện tích tam giác DOC là 108 cm2 . Tính diện tích hình thang ABCD
cho hình thang ABCD có đáy nhỏ AB = 1/2 đáy lớn CD. AC và BD cắt nhau tại O. Sboc = 15 cm2. Tính Sabcd
Xét ΔOAB và ΔOCD có
\(\widehat{AOB}=\widehat{COD}\)
\(\widehat{OAB}=\widehat{OCD}\)
Do đó: ΔOAB đồng dạng với ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}=\dfrac{1}{2}\)
Vì ABCD là hình thang có AC cắt BD tại O
nên \(S_{AOD}=S_{BOC}=15\left(cm^2\right)\)
\(\dfrac{OA}{OC}=\dfrac{1}{2}\)
=>\(S_{AOB}=\dfrac{1}{2}\cdot S_{BOC}\)
=>\(S_{AOB}=\dfrac{1}{2}\cdot15=7,5\left(cm^2\right)\)
\(\dfrac{OA}{OC}=\dfrac{1}{2}\)
=>\(\dfrac{S_{OAD}}{S_{DOC}}=\dfrac{AO}{OC}=\dfrac{1}{2}\)
=>\(S_{DOC}=30\left(cm^2\right)\)
\(S_{ABCD}=S_{AOB}+S_{BOC}+S_{DOC}+S_{AOD}\)
\(=30+15+15+7,5=52,5\left(cm^2\right)\)
Cho hình thang ABCD có đáy CD gấp 2 lần AB,AC và BD cắt nhau tại O.
A. So sánh SAOD và SBOC.
B. Biết SABO là 3,5cm2. Tính S hình thang ABCD.
(Nhớ vẽ hình
a/
Hai tg ABD và tg ABC có chung AB và đường cao từ D->AB = đường cao từ C->AB nên \(S_{ABD}=S_{ABC}\)
Hai tg này có phần diện tích chung là \(S_{ABO}\Rightarrow S_{AOD}=S_{BOC}\)
b/
Hai tg ABC và tg ACD có đg cao từ D->AB = đường cao từ B->CD nên
\(\dfrac{S_{ABC}}{S_{ACD}}=\dfrac{AB}{CD}=\dfrac{1}{2}\)
Hai tg trên có chung AC nên
\(\dfrac{S_{ABC}}{S_{ACD}}=\) đg cao từ B->AC / đg cao từ D->AC\(=\dfrac{1}{2}\)
Hai tg ABO và tg AOD có chung AO nên
\(\dfrac{S_{ABO}}{S_{AOD}}=\) đg cao từ B->AC / đg cao từ D->AC\(=\dfrac{1}{2}\)
\(\Rightarrow S_{AOD}=2xS_{ABO}=2x3,5=7cm^2\)
\(\Rightarrow S_{ABD}=S_{ABO}+S_{AOD}=3,5+7=10,5cm^2\)
Hai tg ABD và tg BCD có đg cao từ D->AB = đường cao từ B->CD nên
\(\dfrac{S_{ABD}}{S_{BCD}}=\dfrac{AB}{CD}=\dfrac{1}{2}\Rightarrow S_{BCD}=2xS_{ABD}=2x10,5=21cm^2\)
\(\Rightarrow S_{ABCD}=S_{ABD}+S_{BCD}=10,5+21=31,5cm^2\)
Cho hình thang ABCD có đáy bé AB = 1/3 CD, 2 đường chéo AC và BD cắt nhau tại O.Biết diện tích tam giác AOB bằng 4,5 cm2.Tính diện tích hình thang ABCD.
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Ông này làm kiểu gì vậy đây mới là toán lớp 5 thôi
Cho hình thang ABCD có ac và BD cắt nhau tại O. biêt diện tích tam giác AOB là 4cm2. diện tích tam giác BOC là 12cm2. Tính diện tích hình thang ABCD
Cho hình thang ABCD có đáy bé AB và đáy lớn CD. Hai đường chéo AC và BD cắt nhau tại I. Biết diện tích tam giác BIC bằng 12cm2 và diện tích tam giác CID bằng 15 cm2. Tính diện tích hình thang ABCD
DT hình thang ABCD :
(12 + 15) x 2 = 54 cm2
Ta thấy 2 hình tam giác BIC và AID có chung cạnh đáy,2 hình tam giác CID và ABI cũng có chung cạnh đáy nên:
Diện tích hình BIC = Diện tích hình AID = 12cm2,Diện tích hình DIC = diện tích hình ABI = 15cm2
Diện tích hình thang ABCD là:
12 + 12+ 15 + 15 = 54 (cm2)
Đáp số:54 cm2
Bấm đúng cho mình nhé
Cho hình thang ABCD có đáy ab=3/5 đáy cd,đường chéo ac và đường chéo bd cắt nhau tại o.Biết diện tích hình tam giác ODC là 60.Tính diện tích hình thang ABCD
60 cm hay gì vậy bạn\
60 cm nhé