Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thân Đức Hùng
Xem chi tiết
Nguyễn Ngọc Anh Minh
26 tháng 6 2023 lúc 9:55

A B F E D H C

a/

H là trực tâm của tg ABC 

\(\Rightarrow AH\perp BC\) (Trong tg 3 đường cao đồng quy tại 1 điểm)

b/

Xét 2 tg vuông ACD và tg vuông BCE có

\(\widehat{ACB}\) chung => tg ACD đồng dạng với tg BCE

\(\Rightarrow\dfrac{CD}{CE}=\dfrac{CA}{CB}\Rightarrow CE.CA=CD.CB\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 10 2018 lúc 6:40

1) Chứng minh tứ giác AEHF nội tiếp đường tròn

BE là đường cao ABC  ⇒ B E ⊥ A C ⇒ A E H ^ = 90 0

CF là đường cao  ∆ ABC  ⇒ C F ⊥ A B ⇒ A F H ^ = 90 0

Tứ giác AEHF có A E H ^ + A F H ^ = 180 0  nên tứ giác AEHF nội tiếp đường tròn

2) Chứng minh CE.CA = CD.CB

∆ ADC và  ∆ BEC có

A D C ^ = B E C ^ = 90 0  (AD,BE là các đường cao)

C ^  chung

Do đó  ∆ ADC ~ ∆ BEC(g-g)

⇒ D C E C = A C B C ⇒ D C . B C = C E . A C

Mai Quỳnh Anh
Xem chi tiết
Lê Thị Khánh Anh
7 tháng 5 2016 lúc 21:27

xét tam giác ABC có

CF vuông gọc với AB
BE vuông góc với AC 

suy ra AH vuông góc với BC ( đường cao thứ ba )

Nhat Phuc Dang
Xem chi tiết
Nguyen Hieu
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 4 2022 lúc 20:08

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F cóc

góc EAB chung

Do đó:ΔAEB\(\sim\)ΔAFC

Suy ra: AE/AF=AB/AC

hay \(AE\cdot AC=AF\cdot AB\)

b: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

góc HBD chung

Do đó:ΔBDH\(\sim\)ΔBEC

Suy ra: BD/BE=BH/BC

hay \(BD\cdot BC=BH\cdot BE\)

Raterano
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 7 2021 lúc 10:49

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC(g-g)

b) Ta có: ΔAEB\(\sim\)ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

van kieu vo
Xem chi tiết
Nguyễn Mỹ Linh
Xem chi tiết
Bích Nguyệtt
Xem chi tiết