Cho hai số a, b thỏa mãn a+b = 6. Hãy chứng tỏ ab bé hơn hoặc bằng 9
Cho 2 số a,b thỏa mãn a+b=6. Hãy chứng tỏ ab =< 9
vì a+b=6 nên a,b<=6
a | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
b | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
=> ab<=9
Cho ba số thực a,b,c thỏa mãn a2+b2+c2=3 . Chứng minh rằng : ab+bc+ca+a+b+c bé hơn hoặc bằng 6
Áp dụng BĐT Cauchy-Schwarz ta có:
\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\Rightarrow\left(a+b+c\right)^2\le9\Rightarrow a+b+c\le3\left(1\right)\)
Ta có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow ab+bc+ca\le3\left(2\right)\)
Cộng vế với vế của\(\left(1\right),\left(2\right)\)ta được:
\(a+b+c+ab+bc+ca\le3+3=6\left(đpcm\right)\)
Cho a,b,c thỏa mãn a+b+c=0. Chứng minh rằng ab+bc+ca bé hơn hoặc bằng 0
Đề : ab + 4bc + ca \(\le\)0
Có : a + b + c = 0 => a = - b - c
Thay vào ab + 4bc + ca \(\le\)0 ta đc:
(-b - c).b + 4bc + c.(-b - c) \(\le\) 0
=> -b2 - bc + 4bc - bc - c2 \(\le\)0
=> -b2 - c2 + 2bc \(\le\)0
=> - (b2 - 2bc + c2) \(\le\) 0
=> -(b - c)2 \(\le\) 0 (luôn đúng)
Vậy ab + 4bc + ca \(\le\) 0
Cho a, b, c thỏa mãn: a+b+c=0. Chứng minh rằng: ab+bc+ca bé hơn hoặc bằng 0
cho M,N là hai số nguyên thỏa mãn M+N=2 Chứng tỏ rằng M nhân N bé hơn hoặc bằng 1
vì M+N = 2 => M=1+k và N = 1-k
=> M.N = (1+k)(1-k) = 1-k+k-k2 = 1-k2 < 1 vì k2>0 với mọi k (đpcm)
Chứng tỏ rằng tổng các số nguyên a thỏa mãn
-15 bé hơn x bé hơn hoặc bằng 18 là một số tự nhiên chia hết cho 33
Các số nguyên a tạo thành dãy
-14,-13;.......-1;0;1;..........................13,14,15;16;17;18
Tổng của chúng là 15+16+17+18=66=2.33 chia hết cho 33
Cho a,b,c thỏa mãn -1< a,b,c< 3,a+b+c=3.Chứng minh ab+bc+ca>-1
tất cả dấu lớn ,bé hơn đều có bé,lớn hơn hoặc bằng nhé
cho a và b là hai số dương thỏa mãn điều kiện: ab+4 bé hơn hoặc bằng 2b.
Tìm GTLN của biểu thức: P=\(\frac{ab}{a^2+2b^2}\)
cho a,b là hai số tự nhiên khác 0 chứng tỏ rằng a/b + b/a bé hơn hoặc bằng 2