Tính nhanh: (1+1/2) + (1+1/6) + (1+1/12) + .....+(1+1/9900) + (1+1/10100)
1\2 + 1\6 + 1\12 ... + 1\9900 + 1\10100 = ?
1/2 + 1/6 + 1/12 + ... + 1/9900 + 1/10100
= 1/1.2 + 1/2.3 + 1/3.4 +... +1/99.100 + 1/100.101
= 1/1 - 1/2 + 1/2 + 1/3 - 1/3 + 1/4 +... + 1/99 - 1 / 100 + 1/100 - 1/101
= 1/1 - 1/101
= 100 /101
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{9900}+\frac{1}{10100}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{99.100}+\frac{1}{100.101}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)
=\(1-\frac{1}{101}\)
=\(\frac{100}{101}\)
1\2 + 1\6 + 1\12 ... + 1\9900 + 1\10100 = ?
1/2 + 1/6 + 1/12 + .... + 1/9900 + 1/10100
Ta có: \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}+\frac{1}{10100}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}+\frac{1}{100.101}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
Tương đương \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}+\frac{1}{100.101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\)
1/2 + 1/6 + 1/12 +...+ 1/9900 + 1/10100
1/1x2+1/2x3+1/3x4+...+1/99x100+1/100x101
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100+1/100-1/101
=1/1-1/101
=100/101
a)1/2+1/6+1/12+........+1/9900+1/10100
b)1/2+1/4+1/8+....+1/256+1/512
a, \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{10100}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{100.101}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{100}-\frac{1}{101}\)
=\(1-\frac{1}{101}\)
=\(\frac{100}{101}\)
b,\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{512}\)
=\(\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+...+\left(\frac{1}{256}-\frac{1}{512}\right)\)
=\(1-\frac{1}{512}\)
=\(\frac{511}{512}\)
\(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{9900}+\frac{1}{10100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
a)1/2+1/6+1/12+.........+1/9900+1/10100 = ?
b)1/2+1/4+1/8+...........+1/256+1/512 = ?
a) trieu dang làm rồi
b) A= 1/2 + 1/4+ 1/8+ 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
A = 1 - 1/2 + 1/2- 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128 + 1/128 - 1/256 - 1/256 - 1/512
A = 1 - 1/512
A = 511/512
1/2+1/6+1/12+.......+1/9900+1/10100
trả lời nhanh giúp mk nha!gợi ý nhỏ:toán nâng cao lớp 4 nhó!1tick nhanh tay!10 bạn đầu tiên đúng mk sẽ tick nhé!1/2+1/6+1/12+.......+1/10100
1/1x2+1/2x3+1/3x4+...........+1/100x101
1-1/2+1/2-1/3+1/3-..........+1/100-1/101
1-1/101
=100/101
cho bạn công thức mẫu trừ đi bao nhiêu thì tử là bấy nhiêu
vd 2/2x4=1/2-1/4
chúc bạn học tốt
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+..+\frac{1}{9900}+\frac{1}{10100}\)
\(=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{99\times100}+\frac{1}{100\times101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{101}{101}-\frac{1}{101}\)
\(=\frac{100}{101}\)
thank you Hoàng Như Quỳnh tặng bạn 1k nhé!
mk cũng chúc bạn hk tốt!
Tính nhanh:
a)1/2+1/6+1/12+...........+1/1990+1/10100
b)1/2+1/4+1/8+.............+1/256+1/512
tính nhanh
1/2+1/6+1/12+1/20+...+1/9900
Dễ quá
1/2 + 1/6 + 1/12 + 1/20 + ... + 1/9900
Đặt A = 1/2 + 1/6 + 1/12 + 1/20 + ... + 1/9900
A = 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/99.100
A = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + .... + 1/99 - 1/100]
A = 1/1 - 1/100
A = 99/100
Vậy A = 99/100
1/2 + 1/6 + 1/12 + 1/20 + ... + 1/9900
= 1/1x2 + 1/2x3 + 1/3x4 + 1/4x5 + ... + 1/99x100
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/99 - 1/100
= 1 - 1/100
= 99/100
1/1.2+1/2.3+1/3.4+....+1/99.100
1-1/2+1/2-1/3+1/3-1/4+.....+1/99-1/100
1-1/100
99/100