Câu hỏi
Cho đường tròn tâm O đường kính AB=2R và E là điểm bất kì trên đường tròn đó (E khác A và B). Đường phân giác góc AEB cắt đoạn thẳng AB tại F và cắt đường tròn (O) tại điểm thứ hai K khác A.
2.Gọi I là giao điểm của đường trung trực đoạn EF với OE. Chứng minh rằng đường tròn (I; IE) tiếp xúc với đường tròn (O) tại E và tiếp xúc với đường thẳng AB tại F.
Ở câu 2 em thấy lời giải là : Ta có I là giao điểm của đường trung trực d của đoạn thẳng EF với OE (gt) nên O,I,E thẳng hàng . Ai có thể giải thích rõ hơn cho em vs đc k ạ
2: I nằm trên trung trực của EF
=>IE=IF
=>góc IEF=góc IFE=góc OKE
=>IF//OK
=>IF vuông góc AB tại F
=>AB là tiêp tuyến của (I;IE)
Cho đường tròn ( 0 ) đường kính AB = 2R và E là điểm bất kì trên đường tròn đó (E khác A và B). Đường phân giác góc AEB cắt đoạn thẳng AB tại F cắt đường tròn ( 0 ) tại điểm thứ hai là K
1)Chứng minh tam giác KAF đồng dạng với tam giác KEA
2)Gọi I là giao điểm trung trực của đoạn EF với OE, chứng minh ( I ) bán kính IE tiếp xúc với đường tròn ( O ) tại E và tiếp xúc với AB tại F
3) Chứng minh MN song song với AB trong đó M, N lần lượt là giao điểm thử hai của AE,BE với đường tròn ( I )
4) tính giá trị nhỏ nhất của chu vi tam giác KPQ theo R khi E chuyển động trên ( O) với P là giao điểm của NF và AK , Q là giao điểm của MF và BK
Cho tam giác ABC có góc A nhỏ hơn 90 độ .Vẽ đường tròn (O) đường kính AB và đường tròn (O') đường kính AC.Đường thẳng AB cắt đường tròn (O')tại điểm thứ hai là D ,đường thẳng AC cắt đường tròn (O')tại điểm thứ hai là E.
a]Chứng minh bốn điểm B,C,D,E cùng năm trên một đường tròn
b]Gọi F là giao điểm của hai đường tròn (O) và (O') (F khác A).Chứng minh 3 điểm B,F,C thẳng hàng và FA là phân giác của góc EFD.
c]Gọi H là giao diểm của AB và EF .Chứng minh BH.AD=AH.BD
Cho đường tròn tâm o đường kính AB bằng 2r lấy điểm I bất kì trên đoạn oa I khác a i khác o dây cm vuông góc với AB tại I trên cung nhỏ BC lấy điểm e bất kì e khác b e khác c AE cắt ci tại I gọi d là giao điểm của BC với tiếp tuyến a tại a của đường tròn o 1 chứng minh befi là tứ giác nội tiếp hai chứng minh ea nhân AF = CB x CD
a: góc AEB=1/2*180=90 độ
góc FIB+góc FEB=180 độ
=>FIBE nội tiếp
b: góc ACB=1/2*180=90 độ
=>AC vuông góc DB
Xét ΔCAF và ΔCEA có
góc CAF=góc CEA
góc ACF chung
=>ΔCAF đồng dạng với ΔCEA
=>CA^2=AF*AE
Xét ΔDAB vuông tại D có AC vuông góc DB
nên CA^2=CD*CB=AF*AE
Cho đường tròn (O), dây AB cố định (AB < 2R). C là điểm chính giữa cung AB nhỏ; Kẻ đường kính CD cắt AB tại H. E là điểm bất kì thuộc cung AB lớn (E khác A, B). CE cắt AB tại F, hai đường thẳng DE và AB tại F, hai đường thẳng DE và AB cắt nhau tại M.
1. Chứng minh rằng tứ giác EHCM nội tiếp.
2. Chứng minh: DE.DM=DH.DC
3. Cho DF giao với CM tại I. Chứng tỏ:
a. I thuộc đường tròn (O)
b. HM là tia phân giác của góc EHI
4. Khi E chuyển động trên cung AB lớn ( E khác A, B). Chứng tỏ E Iuôn đi qua 1 điểm cố định.
Cho tam giác ABC tù. Vẽ đường tròn (O) đường kính ABvaf đường tròn (O') đường kính AC. Đường thẳng AB cắt (O') tại D, AC cắt (O) tại E.
1, CM: B, C, D, E cùng nằm trên 1 đường tròn
2, Gọi F là giao điểm (O) và (O') (F khác A). CM: B, F, C thẳng hàng và FA là tia phân giác của góc EFD.
3, Gọi H là giao điểm của AB và EF. CM: BH.AD = AH.BD
Cho đường tròn tâm O bán kính R và điểm A bất kỳ thuộc đường tròn (O). Trên tiếp tuyến tại A của đường tròn (O) lấy một điểm M sao cho MA=2R. Từ M vẽ tiếp tuyến MB với (O) (B là tiếp điểm, B khác A); OM cắt AB tại H
a) Chứng minh tứ giác OAMB là tứ giác nội tiếp và OM vuông góc AB
b) Vẽ đường kính BD của đường tròn (O); MD cắt đường tròn (O) tại E (E khác D).Chứng minh MB2=MA2=ME.MD
c) Tính góc MHE
d) Từ A vẽ AF vuông góc BD (F thuộc BD); tia BE cắt đường thẳng AF tại K.Chứng minh A là trung điểm của KF
Cho nữa đường tròn (O;R) đường kính AB. Một điểm M cố định thuộc đoạn thẳng OB (M khác B và M khác O). Đường thẳng d vuông góc với AB tại M cắt nữa đường tròn đã cho tại N. Trên cúng NB lấy điểm E bất kì ( E khác B và E khác N). Tia BE cắt đường thẳng d tại C, đường thẳng AC cắt nữa đường tròn tại D. Gọi giao điểm của AE với d là H
Gọi K là tâm đường tròn ngoại tiếp tam giác AHC. Chứng minh rằng khi E di động trên cung NB thì K luôn nằm trên 1 đường thẳng cố định