Chứng tỏ rằng: \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2017}}< \frac{1}{2}\)
Chứng tỏ rằng:
\(\frac{1}{1+3}+\frac{1}{1+3+5}+\frac{1}{1+3+5+7}+...+\frac{1}{1+3+5+7+...+2017}< \frac{3}{4}\)
Chứng minh rằng\(\frac{1}{2^3}+\frac{1}{3^3}+....+\frac{1}{2017^3}< \frac{1}{2^2}\)
C/M công thức tổng quát:\(n^3>n^3-n\Rightarrow\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{n\left(n^2-1\right)}=\frac{1}{\left(n-1\right)n\left(n+1\right)}\)
\(\Rightarrow\frac{1}{n^3}< \frac{1}{\left(n-1\right)n\left(n+1\right)}\)
Đặt \(A=\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+\frac{1}{5^3}+.....+\frac{1}{2017^3}\)
Áp dụng vào bài toán,ta được:\(A< \frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+....+\frac{1}{2016\cdot2017\cdot2018}\)
\(=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+....+\frac{1}{2016\cdot2017}-\frac{1}{2017\cdot2018}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2017\cdot2018}\right)\)
\(=\frac{1}{4}-\frac{1}{2\cdot2017\cdot2018}\)
\(< \frac{1}{2^2}^{ĐPCM}\)
chứng tỏ \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2016}}+\frac{1}{2^{2017}}< 1\)
Ta có:
\(A=\frac{1}{2}+\frac{1}{2^2}+........+\frac{1}{2^{2017}}\)
\(\Rightarrow2A=1+\frac{1}{2}+.........+\frac{1}{2^{2016}}\)
Khi đó:
\(2A-A=\left(1+\frac{1}{2}+.....+\frac{1}{2^{2016}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{2017}}\right)\)
\(\Rightarrow A=1-\frac{1}{2^{2017}}\)
\(\Rightarrow A=\frac{2^{2017}-1}{2^{2017}}\)
\(\Rightarrow A< 1\)
VẬy: A < 1
Ta có: 1/2+1/2^2+...+1/2^2017<1/1.2+1/2.3+...+1/2016.2017
1/2<1/1.2
1/2^2<1/2.3
..........
1/2^2017<1/2016.2017
Câu 1: Tính: \(A=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{1\cdot2+2\cdot3+3\cdot4+...+2017\cdot2018}\)
Câu 2: Cho: \(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\) và \(B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)
Câu 3: Chứng tỏ rằng: \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\)
Câu 4: Tìm các số tự nhiên a, b sao cho: \(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}\)
Câu 5: Tính \(A=\left(\frac{1}{2^2}-1\right)\cdot\left(\frac{1}{3^2}-1\right)\cdot\left(\frac{1}{4^2}-1\right)\cdot...\cdot\left(\frac{1}{100^2}-1\right)\)
Câu 6: Tìm số tự nhiên n để các phân số tối giản
\(A=\frac{2n+3}{3n-1}\), \(B=\frac{3n+2}{7n+1}\)
Câu 7: So sánh: \(A=1\cdot3\cdot5\cdot7\cdot...\cdot99\) với \(B=\frac{51}{2}\cdot\frac{52}{2}\cdot\frac{53}{2}\cdot...\cdot\frac{100}{2}\)
Câu 8: Chứng tỏ rằng:
a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}< 1\)
b) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
Câu 9: Cho \(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}\)
Chứng minh rằng: \(\frac{1}{3}< A< \frac{1}{2}\)
Câu 10: Chứng tỏ rằng: \(\frac{7}{12}< \frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}< 1\)
Câu 8( Mình không viết đè nữa nha)
a) 2-1/1.2 + 3-2/2.3 + 4-3/3.4 +…..+ 100-99/99.100
= 1 – 1/2 + 1/2 – 1/3 + 1/3 – 1/4 +…..+ 1/99 – 1/100
= 1 – 1/100 < 1
= 99/100 < 1
Vậy A< 1
A=\(\frac{\frac{1}{2018}+\frac{2}{2017}+\frac{3}{2016}+....+\frac{2017}{2}+\frac{2018}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2019}}\). Chứng minh rằng A là số nguyên
Mong mọi người giúp
chứng tỏ rằng
C = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}< \frac{1}{3}\)
D = \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}< \frac{3}{4}\)
Phần C đề thiếu
\(D=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)
\(\Rightarrow3D=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(\Rightarrow3D-D=(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}})-\)\((\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}})\)
\(\Rightarrow2D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow6D=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow6D-2D=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}\)
\(\Rightarrow4D=3-\frac{203}{3^{100}}\)
\(\Rightarrow D=\frac{3}{4}-\frac{\frac{203}{3^{100}}}{4}< \frac{3}{4}\left(đpcm\right)\)
\(C=\frac{1}{2}-\frac{1}{2^2}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)
\(\Rightarrow2C=1-\frac{1}{2}+...+\frac{1}{2^{98}}-\frac{1}{2^{99}}\)
\(\Rightarrow2C+C=(1-\frac{1}{2}+...+\frac{1}{2^{98}}-\frac{1}{2^{99}})+\)\((\frac{1}{2}-\frac{1}{2^2}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}})\)
\(\Rightarrow3C=1-\frac{1}{100}\)
\(\Rightarrow C=\frac{1}{3}-\frac{1}{300}< \frac{1}{3}\left(đpcm\right)\)
Chứng minh rằng
\(\frac{1}{12}< \frac{1}{2^3}+\frac{1}{3^3}+...+\frac{1}{n^3}+\frac{1}{2017^3}< \frac{508}{2018}\)
(với mọi n>1)
chứng tỏ rằng
a) A= \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}< 1\)
b) B= \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2019}}< \frac{1}{2}\)
a/
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(A=2A-A=1-\frac{1}{2^{100}}< 1\)
b/
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}\)
\(2B=3B-B=1-\frac{1}{3^{2019}}\Rightarrow B=\frac{1}{2}-\frac{1}{2.3^{2019}}< \frac{1}{2}\)
chứng minh :A) \(D=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}< 1\)
B) \(E=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}.\)Chứng tỏ 1<E<2
C)\(F=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2017^2}\). Chứng tỏ giá trị F không phải là số tự nhiên
AI LÀM ĐƯỢC CÁI NÀO THÌ LÀM NHÉ! GIÚP MÌNH NHAAAAAAAAAAA! ^3^
GIÚP MÌNH VỚI GẤP LẮM,MÌNH CẢM ƠN TRƯỚC NHÉ !