Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn hoàng mai
Xem chi tiết
nguyễn hoàng mai
Xem chi tiết
Hiệp sĩ ánh sáng ( Boy l...
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2022 lúc 13:57

Bài 3: 

a: Xét ΔABM và ΔACN có

AB=AC
góc ABM=góc ACN

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc BAH=góc CAK

Do đó; ΔAHB=ΔAKC

Suy ra: AH=AK và BH=CK

c: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có

MB=CN

góc M=góc N

Do đó ΔHBM=ΔKCN

Suy ra: góc HBM=góc KCN

=>góc OBC=góc OCB

hay ΔOBC can tại O

 

゚°☆Morgana ☆°゚ ( TCNTT )
Xem chi tiết
IS
22 tháng 2 2020 lúc 20:02

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

Khách vãng lai đã xóa
TommyInit
7 tháng 5 2021 lúc 18:25
dài dữ vậy
Khách vãng lai đã xóa
Phạm Hải Yến
7 tháng 5 2021 lúc 21:51
Vì AH vuông góc với BC Độ dài AH là 12 D€ABvaf E€Ac
Khách vãng lai đã xóa
Phạm anh thư 6c
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 1 2023 lúc 19:49

a: Xét ΔAHB và ΔAHC co

AH chung

HB=HC

AB=AC

=>ΔAHB=ΔAHC

b: ΔAHB=ΔAHC

=>góc BAH=góc CAH

LÊ NGỌC ÁNH
Xem chi tiết
Khang
3 tháng 4 2020 lúc 20:48

Hình tự kẻ nha

a)Xét 2 tam giác vuông ABH và ACH có

 Góc AHB = góc AHC (=90°)

 AB= AC ( tam giác ABC cân tại A)

 Góc ABC = góc ACB (tam giác ABC cân tại A)

=>2 tam giác vuông ABH=ACH (cạnh huyền -góc nhọn)

b)Tam giác ABC cân =>góc ABC=gócACB

=>gócABM=gócACN

Xét 2 tam giác ABM và ACN

AB=AC ( tam giác ABC cân tại A)

Góc ABM=góc ACN (cmt)

BM=CN(gt)

=> tam giác ABM=tam giác ACN

=>AM=AN

Do đó tam giác AMN cân tại A

c) Phần này hình như sai đề

Khách vãng lai đã xóa
Edogawa Conan
3 tháng 4 2020 lúc 20:57

A B C M N H E F K 1 2 1 1 2 3 3 2

a) Xét t/giác ABH và t/giác ACH

có: AB = AC (gt)

    \(\widehat{H_1}=\widehat{H_2}=90^0\)(gt)

   \(\widehat{B_1}=\widehat{C_1}\) (gt)

=> t/giác ABH = t/giác ACH (ch - gn)

b) Ta có: \(\widehat{B_1}+\widehat{ABM}=180^0\)(kề bù)

      \(\widehat{C_1}+\widehat{ACN}=180^0\) (kề bù)

Mà \(\widehat{B_1}=\widehat{C_1}\) (gt) => \(\widehat{ABM}=\widehat{ACN}\)

Xét t/giác ABM và t/giác ACN

có AB = AC (gt)

  \(\widehat{ABM}=\widehat{ACN}\) (cmt)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

=> AM = AN (2 cạnh t/ứng)

=> t/giác AMN cân

c) Ta có: t/giác  MEB vuông tại A => \(\widehat{M}+\widehat{B_2}=90^0\)

    t/giác FCN vuông tại F => \(\widehat{C_2}+\widehat{N}=90^0\)
Mà \(\widehat{M}=\widehat{N}\)(Vì t/giác AMN cân tại A) => \(\widehat{B_2}=\widehat{C_2}\) (1)

Ta lại có: \(\widehat{B_2}=\widehat{B_3}\) (Đối đỉnh); \(\widehat{C_2}=\widehat{C_3}\)(đối đỉnh)       (2)

Từ (1) và (2) => \(\widehat{B_3}=\widehat{C_3}\) => t/giác BKC cân tại K

                      có KH là đường cao

  => KH cũng là đường trung trực của cạnh BC (t/c của t/giác cân) (3)

(đoạn này chưa học có thể xét t/giác KBH và t/giác KCH =>  BH = CH => KH là đường trung trực)

t/giác ABH = t/giác ACH (cm câu a) =>  BH = CH 

=> AH là đường trung tuyến

mà AH cũng là đường cao 

=> AH là đường trung trực của cạnh BC (4)

Do A \(\ne\)K (5)

Từ (3); (4); (5) => A, H, K thẳng hàng

Khách vãng lai đã xóa
Trần Hồng Nhung 9ATHCSLo...
3 tháng 4 2020 lúc 21:08

a, Xét tam giác ABC cân tại A 

AH vuông góc với BC

=> BC là đường phân giác của tam giác ABC

=> HB = HC

Xét tâm giác ABH và tam giác ACH có

Góc H = 90 độ

HB = HC ( cmt )

AH là góc chung

=> ABH = ACH ( c.g.c )

b, Xét tam giác ABC cân tại A có

 BM là tia đối của BC 

=> BM = HB ( 1 ) 

    CN là tia đối của CB 

=> CN = HC ( 2 ) 

BM = CN ( gt)

Từ ( 1 ) và ( 2 ) suy ra

BM = HB = HC = CN 

=> Tam giác AMN cân tại A

Khách vãng lai đã xóa
Thu It
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 2 2023 lúc 19:47

a: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc BC

c: Xét ΔEHB vuông tại H và ΔFKC vuông tại K có

EB=FC

góc EBH=góc FCK

=>ΔEHB=ΔFKC

=>EH=FK

d: Xét ΔABH và ΔACK có

AB=AC

góc ABH=góc ACK

BH=CK

=>ΔABH=ΔACK

=>AH=AK

=>ΔAHK cân tại A

mà AM là đường cao

nên AM là phân giác của góc HAK

e: Xét ΔAHE và ΔAKF có

AH=AK

góc AHE=góc AKF

HE=KF

=>ΔAHE=ΔAKF

 

Nguyễn Kiều Trang
Xem chi tiết
Song tử cá tính
Xem chi tiết