Chứng minh rằng:
1/3+2/3^2+3/3^3+4/3^4+…+2001/3^2001< 4/5
cho s= 1+4+4^2+4^3+......+4^2001+4^2002. chứng minh rằng 4^2003 - 3S là số nguyên dương nhỏ nhất
4S - S = 4 + 42 + 43 + 44 +....+ 42002 + 42003 - 1 - 4 - 42 - 43 - 44 -......- 42001 - 42002
3S = 42003 - 1 => 42003 - 3S = 1 là số nguyên dương nhỏ nhất (đpcm)
1+(-2)+3+(-4)+....+2001+(-2002)
1+(-3)+5+(-7)+....+(-1999)+2001
1+(-2)+3+(-4)+...+2001+(-2002)
=[1+(-2)]+[3+(-4)]+...+[2001+(-2002)]
=(-1)+(-1)+...+(-1) (có 1001 số hạng)
=(-1).1001
=-1001
chứng minh rằng
5^2003+5^2002+5^2001 chia hết cho 31
1+7+7^2+7^3+...+7^101 chia hết cho8
4^39+4^40+4^41 chia hết 28
Mình giúp cho đáp án đúng 100%
5^2003+5^2002+5^2001 chia hết cho 31
=5^2001.(1+5+5^2)
=5^2001.31 chia hết cho 3
hai bài kia tương tự rất dễ đúng ko
Ta có: 52003 + 52002 + 52001
= 52001.(1 + 5 + 25)
= 52001 . 31 chia hết cho 31
Ta có: 1 + 7 + 72 + ...... + 7101
= (1 + 7) + (72 + 73) + ..... + (7100 + 7101)
= 1.8 + 72.(1 + 7) + ..... + 7100.(1 + 7)
= 1.8 + 72.8 + ..... + 7100 . 8
= 8.(1 + 72 + ..... + 7100) chia hết cho 8
a/Chứng minh rằng \(\frac{2}{\left(2n+1\right)\sqrt{n}+\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b/Áp dụng chứng minh
\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+\frac{1}{7\left(\sqrt{3}+\sqrt{4}\right)}+...+\frac{1}{4003\left(\sqrt{2001}+\sqrt{2002}\right)}<\frac{2001}{2003}\)
a) 1 - 2 - 3 + 4 +5 - 6 - 7 + ..... + 2001 - 2002 -2003 + 2004
b) 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ..... + 2001 + 2002 - 2003 - 2004
a) \(1-2-3+4+5-6-7+...+2001-2002-2003+2004\)
\(=\left(1-2-3+4\right)+\left(5-6-7+8\right)+...+\left(2001-2002-2003+2004\right)\)
\(=0+0+...+0=0\)
b) \(1+2-3-4+5+6-7-8+...+2001+2002-2003-2004\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(2001+2002-2003-2004\right)\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(=\left(-4\right)\cdot501=\left(-2004\right)\)
1. Rút gọn: M = [(x^5)-(2x^4)+(2x^3)-(4x^2)+3x+6]/[(x^2)+2x-8]
2. Cho a, b, c thỏa mãn: (1/a)+(1/b)+(1/c)=1/(a+b+c)
Chứng minh rằng: M = [(a^19)+(b^19)].[(b^5)+(c^5)].[(c^2001)+(a^2001)]=0
3. Cho a, b, c, x, y, z thỏa mãn: a+b+c=1; (a^2)+(b^2)+(c^2)=1 và 1/a=1/b=1/c
Chứng minh rằng: xy+yz+xz=0
Tính:
a) (2^2007 + 2^2006) : 2^2006 b) (3^2011 + 3^2010) : 3^2010
c) (5^2001 + 5^2000) : 5^2000 d) (4^2001 + 4^2000) : 4^2000
e) (6^2005 + 6^2004) : 6^2004 f) (7^2011 + 7^2010) : 7^2010
\(a,\left(2^{2007}+2^{2006}\right):2^{2006}=2^{2007}:2^{2006}+2^{2006}:2^{2006}=2+1=3\\ b,\left(3^{2011}+3^{2010}\right):3^{2010}=3^{2011}:3^{2010}+3^{2010}:3^{2010}=3+1=4\\ c,\left(5^{2001}+5^{2000}\right):5^{2000}=5^{2001}:5^{2000}+5^{2000}:5^{2000}=5+1=6\)
Tương tự là d,e,f và kết quả đúng lần lượt là 5,7,8 nha
Cho dãy : 1/1 ; 2/1 ; 1/2 ; 3/1 ; 2/2 ; 1/3 ; 4/1 ; 3/2 ; 2/3 ; 1/4 ; 5/1 ; 4/2 ; 3/3 ; 2/4 ; 1/5 ;... . Tìm số thứ 2001 của dãy
a) 1 + (-2) + 3 + (-4) + ...... + 2001 + (-2002)
b) 1 + (-3) + 5 + (-7) + ....+ (-1999) + 2001
c) ( x-3).(x-5)<0
a) 1 + (-2) = (-1) và 2001 + (-2002) = (-1)
=> Nếu ta lấy (-1) nhân với số cặp phép tính sẽ ra đc đáp án
(-1) * ( 2002 : 2 )= (-1001)
KQ= (-1001)
b) 1 + 2001= 2002 và (-3) +(-1999) = (-2002)
nếu ta lấy hai phép tính trên cộng lại với nhau sẽ = 0
và ta nhân 0 với số cặp phép tính nhưng 0 nhân với mấy cũng sẽ = 0
KQ= 0
c) mik cần biết p bạn tìm x hay tính phép tính (x-3).(x-5)