\(\frac{27\cdot18+27\cdot103-27\cdot102}{15.33+33\cdot12}\)
\(\frac{27\cdot18+27\cdot103-120\cdot27}{15\cdot33+33\cdot12}\)
=27.(18+103-120)/33.(15+12)
= 27.1/33.27
=1/33
\(=\frac{27\left(18+103-120\right)}{33\left(15+12\right)}\)
\(=\frac{27\times1}{33\times27}\)
\(=\frac{1}{33}\)
\(\left(\frac{1}{1\cdot101}+\frac{1}{2\cdot102}+\frac{1}{3\cdot103}+...+\frac{1}{10\cdot110}\right)\cdot x=\frac{1}{1\cdot11}+\frac{1}{2\cdot12}+...+\frac{1}{100\cdot110}\)
tìm x
\(\left(\frac{1}{1\cdot101}+\frac{1}{2\cdot102}+\frac{1}{3\cdot103}+...+\frac{1}{10\cdot110}\right)\cdot x=\frac{1}{1\cdot11}+\frac{1}{2\cdot12}+...+\frac{1}{100\cdot110}\)
Tìm x
\(\left(\frac{1}{1\cdot101}+\frac{1}{2\cdot102}+\frac{1}{3\cdot103}+...+\frac{1}{10\cdot110}\right)\cdot x=\frac{1}{1\cdot11}+\frac{1}{2\cdot12}+...+\frac{1}{100\cdot110}\)
Tính tổng: A=\(\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+...+\frac{1}{10.110}\)
= \(\frac{1}{100}\left(\frac{1}{1}-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+...+\frac{1}{10}-\frac{1}{110}\right)\)
=\(\frac{1}{100}\left(\left(1+\frac{1}{2}+...+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)\right)\)(1)
B = \(\frac{1}{10}\left(1-\frac{1}{11}+\frac{1}{2}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{110}\right)\)
=\(\frac{1}{10}\left(1+\frac{1}{2}+..+\frac{1}{100}-\frac{1}{11}-\frac{1}{12}-...-\frac{1}{110}\right)\)
=\(\frac{1}{10}\left(\left(1+\frac{1}{2}+...+\frac{1}{10}\right)-\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)\right)\) (2)
Từ (1) và (2) => x = B/A = 1/10 / 1/100 = 10
\(\left(\frac{1}{1\cdot100}+\frac{1}{2\cdot102}+\frac{1}{3\cdot103}+...+\frac{1}{10\cdot110}\right)x=\frac{1}{1\cdot11}+\frac{1}{2\cdot12}+...+\frac{1}{100.110}\)
trình bày cách giải hộ em
một like cho câu trả lời CHI TIẾT nhất ạ giải phương trình
\(\left(\frac{1}{1\cdot101}+\frac{1}{2\cdot102}+\frac{1}{3\cdot103}+...+\frac{1}{10\cdot110}\right)\cdot x=\frac{1}{1\cdot11}+\frac{1}{2\cdot12}+...+\frac{1}{100\cdot110}\)
Tình A=\(\frac{\left(4\cdot7+2\right)\left(6\cdot9+2\right)\left(8\cdot11+2\right)...\left(100\cdot103\right)}{\left(5\cdot8+2\right)\left(7\cdot10+2\right)\left(9\cdot12+2\right)...\left(99\cdot102+2\right)}\)
Tính\(\frac{\left(4\cdot7+2\right)\left(6\cdot9+2\right)\left(8\cdot11+2\right)..........\left(100\cdot103+2\right)}{\left(5\cdot8+2\right)\left(7\cdot10+2\right)\left(9\cdot12+2\right)..........\left(99\cdot102+2\right)}\)
E=\(\frac{1}{1\cdot101}+\frac{1}{2\cdot102}+\frac{1}{3\cdot103}+...+\frac{1}{10\cdot110}\)và F=\(\frac{1}{1\cdot11}+\frac{1}{2\cdot12}+\frac{1}{3\cdot13}+...+\frac{1}{100\cdot110}\)
tính tỉ số\(\frac{E}{F}\)