Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Thiên Băng
Xem chi tiết
trịnh trang
Xem chi tiết
Bùi Minh Quân
Xem chi tiết
Steolla
2 tháng 9 2017 lúc 12:15

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Cô Hoàng Huyền
4 tháng 6 2018 lúc 10:15

Ta có:

VT = \(\frac{a}{b^3-1}+\frac{b}{a^3-1}=\frac{a}{\left(b-1\right)\left(b^2+b+1\right)}+\frac{b}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\frac{a}{-a\left(b^2+b+1\right)}+\frac{b}{-b\left(a^2+a+1\right)}=\frac{-1}{b^2+b+1}-\frac{1}{a^2+a+1}\)

\(=\frac{-a^2-a-1-b^2-b-1}{\left(b^2+b+1\right)\left(a^2+a+1\right)}=\frac{-a^2-b^2-3}{a^2b^2+ab^2+b^2+a^2b+ab+b+a^2+a+1}\)

\(=\frac{-\left[\left(a+b\right)^2-2ab\right]-3}{a^2b^2+ab\left(a+b\right)+\left(a+b\right)^2+ab-2ab+\left(a+b\right)+1}\)

\(=\frac{-\left[1-2ab\right]-3}{a^2b^2+ab+1-ab+1+1}\)

\(=\frac{2\left(ab-2\right)}{a^2b^2+3}=VP\)

Vậy nên VT = VP hay \(\frac{a}{b^3-1}+\frac{b}{a^3-1}=\frac{2\left(ab-2\right)}{a^2b^2+3}\)   (dpcm)

TAKASA
17 tháng 8 2018 lúc 19:56

Bài giải : 

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Minh Tài
Xem chi tiết
Đỗ Ngọc Hải
4 tháng 6 2018 lúc 10:24

https://olm.vn/hoi-dap/question/1034464.html

Lee Min Ho
Xem chi tiết
D.Khánh Đỗ
Xem chi tiết
Chu Công Đức
31 tháng 1 2020 lúc 16:26

\(a+b=1\)\(\Rightarrow\hept{\begin{cases}a-1=-b\\b-1=-a\end{cases}}\)

Ta có: \(\frac{a}{b^3-1}-\frac{b}{a^3-1}=\frac{a}{\left(b-1\right)^3+3b\left(b-1\right)}-\frac{b}{\left(a-1\right)^3+3a\left(a-1\right)}\)

\(=\frac{a}{-a^3-3ab}-\frac{b}{-b^3-3ab}=\frac{a}{-a\left(a^2+3b\right)}-\frac{b}{-b\left(b^2+3a\right)}\)

\(=\frac{-1}{a^2+3b}-\frac{-1}{b^2+3a}=\frac{-1}{a^2+3b}+\frac{1}{b^2+3a}=\frac{-\left(b^2+3a\right)+a^2+3b}{\left(a^2+3b\right)\left(b^2+3a\right)}\)

\(=\frac{-b^2-3a+a^2+3b}{a^2b^2+3a^3+3b^3+9ab}=\frac{-\left(b^2-a^2\right)+\left(3b-3a\right)}{a^2b^2+3\left(a^3+b^3\right)+9ab}\)

\(=\frac{-\left(b-a\right)\left(b+a\right)+3\left(b-a\right)}{a^2b^2+3\left[\left(a+b\right)^3-3ab\left(a+b\right)\right]+9ab}=\frac{-\left(b-a\right)+3\left(b-a\right)}{a^2b^2+3\left[1-3ab\right]+9ab}\)

\(=\frac{2\left(b-a\right)}{a^2b^2+3-9ab+9ab}=\frac{2\left(b-a\right)}{a^2b^2+3}\left(đpcm\right)\)

Khách vãng lai đã xóa
Hai Anh Vũ
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2023 lúc 22:03

Ta có:

\(\dfrac{a^2-ab+b^2}{a^2+ab+b^2}=\dfrac{\dfrac{1}{3}\left(a^2+ab+b^2\right)+\dfrac{2}{3}\left(a-b\right)^2}{a^2+ab+b^2}\)

\(=\dfrac{1}{3}+\dfrac{2\left(a-b\right)^2}{3\left(a^2+ab+b^2\right)}\ge\dfrac{1}{3}\)

Dấu = xảy ra khi \(a=b\)

Lê Diêu
Xem chi tiết
Nguyễn Thanh
Xem chi tiết