Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
truong quang huy
Xem chi tiết
No Name
Xem chi tiết
Trí Tiên
7 tháng 3 2020 lúc 10:20

Ta có :

\(\left(a+b+c\right)\left(a+b+c\right)-2\left(ab+bc+ca\right)\)

\(=a^2+ab+ac+ba+b^2+bc+ca+cb+c^2-2ab-2bc-2ca\)

\(=\left(a^2+b^2+c^2\right)+\left(ab+ac+ba+bc+ca+cb-2ab-2bc-2ca\right)\)

\(=a^2+b^2+c^2\)

Khách vãng lai đã xóa
╰Nguyễn Trí Nghĩa (team...
7 tháng 3 2020 lúc 10:22

\(\left(a+b+c\right).\left(a+b+c\right)-2.\left(a.b+b.c+c.a\right)\)

\(=a^2+b^2+c^2-\left(2ab+2bc+2ca\right)\)

\(=a^2+b^2+c^2-2ab-2bc-2ca\)

\(=a^2-2ab+b^2-2bc+c^2-2ca\)

\(=\left(a-2b\right)a+\left(b-2c\right)b+\left(c-2a\right)c\)

Chúc bn học tốt

Khách vãng lai đã xóa
⌛𝓢𝓸𝓵𝓸               ツ[...
7 tháng 3 2020 lúc 10:27

\(\text{(a+b+c).(a+b+c)-2(a.b+b.c+c.a}\)

\(=a.a+a.b+a.c+b.a+b.b+b.c+c.a+c.b+c.c-2.\left(a.b+b.c+c.a\right)\)

\(=\left(a^2+b^2+c^2\right)+a.b+a.c+b.a++b.c+c.a+c.b-2.a.b-2.b.c-c.a.2\)

\(=a^2+b^2+c^2\)

Vậy.......

Học tốt!

Khách vãng lai đã xóa
Khôi Nguyên Nguyễn
Xem chi tiết
Sana .
28 tháng 2 2021 lúc 8:51

(a+b+c).(a+b+c)-2(a.b+b.c+c.a)=a^2+ab+ca+ab+b^2+bc+ca+bc+c^2-2ab-2bc-2ca=(a^2+b^2+c^2)+(ab+ab-2ab)+(ca+ca-2ca)+(bc+bc-2bc)=a^2+b^2+c^2 .

Mik viết thế này mong bạn thông cảm .

Khách vãng lai đã xóa
Tạ Đức Hoàng Anh
28 tháng 2 2021 lúc 8:50

Ta có: \(\left(a+b+c\right).\left(a+b+c\right)-2\left(ab+bc+ca\right)\)

     \(=a^2+b^2+c^2+2\left(ab+bc+ca\right)-2\left(ab+bc+ca\right)\)

     \(=a^2+b^2+c^2\)

Khách vãng lai đã xóa
Trần Minh Huyền
Xem chi tiết
Thieu Gia Ho Hoang
14 tháng 2 2016 lúc 11:26

bai toan nay kho

Hà My Trần
Xem chi tiết
Hà My Trần
Xem chi tiết
White Snow
Xem chi tiết
White Snow
Xem chi tiết
Trương Trần Duy Tân
30 tháng 10 2015 lúc 16:40

Nhân mẫu số vào ta được :

ac + ad + bd + bc +ab - ac -bd + dc = ab + bc + cd +da

=> biểu thức trên có giá trị rút gọn là abcd

Ngọc Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 12 2023 lúc 19:02

a: Thay x=49 vào A, ta được:

\(A=\dfrac{2\cdot7+1}{7-3}=\dfrac{14+1}{4}=\dfrac{15}{4}\)

b: \(B=\dfrac{2x+36}{x-9}-\dfrac{9}{\sqrt{x}-3}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

\(=\dfrac{2x+36}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{9}{\sqrt{x}-3}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

\(=\dfrac{2x+36-9\left(\sqrt{x}+3\right)-\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2x+36-9\sqrt{x}-27-x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-6\sqrt{x}+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)

c: \(P=A\cdot B=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2\sqrt{x}+1}{\sqrt{x}+3}\)

P>1 khi P-1>0

=>\(\dfrac{2\sqrt{x}+1-\sqrt{x}-3}{\sqrt{x}+3}>0\)

=>\(\sqrt{x}-2>0\)

=>\(\sqrt{x}>2\)

=>x>4

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x>4\\x\ne9\end{matrix}\right.\)