cho n thuộc N. CHứng minh rằng 9.10n+18 chia hết cho 27
Giải giúp mik nha
Chứng minh rằng:
a.A=10^28+8 chia hết cho 72
b.B=10^n+18^n-1 chia hết cho 27,với n thuộc N
mk cần gấp các bn giúp mk nha
a) Ta có : A = 1028 + 8
= 100...0 + 8 (28 chữ số 0)
= 100...008 (27 chữ số 0)
Nhận xét: 1028 + 8 có 3 chữ số tận cùng là 008
lại có : Tổng của 3 chữ số này là : 0 + 0 + 8 = 8 => chia hết cho 8
=> 1028 + 8 \(⋮\)8 (1)
Nhận xét : 1028 + 8 = 100...008 (27 chữ số 0)
=> Tổng các chữ số của số trên là : 1 + 0 + 0 + .... + 0 + 0 + 8 = 9 \(⋮\)9 (27 số hạng 0)
=> 1028 + 8 \(⋮\)9(2)
Từ (1) và (2) ta có :
ƯCLN(8,9) = 1
=> 1028 + 8 \(⋮\)BCNN(8,9)
=> 1028 + 8 \(⋮\)72
Ta có :
\(10^{28}+8=100...008\)(27 chữ số 0 )
Xét \(008⋮8\Rightarrow10^{28}+8⋮8\left(1\right)\)
Xét \(1+27\times0+8=9⋮9\Rightarrow10^{28}+8⋮9\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow10^{28}+8⋮72\)
Cho n thuộc N, chứng minh rằng 9.10^n+18 chia hết cho 27
ta có 10^n có dạng 1000..0
=> 9.10^n có dạng 90...0
từ đó ta có 9.10^n +18 sẽ có dạng 900...018
=> 27:9,3 => 900...018:9,3
=> 9.10^n+18:27
giải giúp mik với
chọn n thuộc N. Chứng minh rằng
a) 5^2 - 1 chia hết cho 4
b) n^2 + n +1 ko chia hết cho 4
c) 10^2 -1 chia hết cho 9
cảm ơn trước nha
chứng minh rằng với mọi n thuộc N thì 10^n + 18.n -28 chia hết cho 27
Ta có: 27n - 27 chia hết cho 27 (1)
10n - 9n - 1 = [( 9...9 + 1) - 9n - 1] = 9...9 - 9n = 9 (1...1 - n) chia hết cho 27 (2)
Vì 9 chia hết cho 9 và 1...1 - n chia hết cho 3. Do 1...1 - n là một số có tổng các chữ số chia hết cho 3 và từ (1) và (2) => ( 10^n+18n-28 ) chia hết cho 27.
Vậy ( 10^n+18n-28 ) chia hết cho 27.(đpcm)
Hok tốt!!!
Chứng tỏ rằng với n thuộc N thì 10n + 18.n-1 chia hết cho 27
Mọi người nhanh lên giúp mk nha mk đang cần gấp lắm
\(TH1;n=3k\)\(\Rightarrow10^n+18n-1=\)\(10^{3k}+18.3k-1=1000^k+54k-1\equiv1+54k-1\left(mod27\right)\equiv0\left(mod27\right)\left(1\right)\)
\(TH2;n=3k+1\Rightarrow10^n+18n-1=10^{3k+1}+18.\left(3k+1\right)-1\)\(=10^{3k}.10+18.\left(3k+1\right)-1=1000^k.10+54k+18-1\)\(\equiv1.10+54k+17\left(mod27\right)\equiv54k+27\left(mod27\right)\equiv0\left(mod27\right)\left(2\right)\)
\(TH3;n=3k+2\Rightarrow10^n+18n-1=10^{3k+2}+54k+36-1\)\(=1000^{3k}.100+54k+35\equiv1.100+54k+35\left(mod27\right)\)\(\equiv54k+135\left(mod27\right)\equiv0\left(mod27\right)\left(3\right)\)\(Từ\left(1\right);\left(2\right);\left(3\right)\Rightarrow10^n+18n-1⋮27,\forall n\in N\left(ĐPCM\right)\)
10n+18n-1=10n-1+18n=99.....9(n chữ số 9)+18n
=9.(111....1(n chữ số 1)+2n)
xét --------------------------------=11...1-n+3n
dễ thấy tổng các chữ số của 11....1(n chữ số 1) là n
=>11....1-n chia hết cho 3
=>11.....1-n+3 chia hết cho 3
=>10n+18n-1 chia hết cho 27
Chứng minh rằng số A = 10n + 18 . n -1 chia hết cho 27 ( n là số tự nhiên )
Giải chi tiết nha
khi n= 1
=> A=10^1 + 18.1 - 1 = 27 chia hết cho 27
khi n=k
=>A= 10^k +18k -1
khi n=k+1
10^k+1 +18(k+1) -1
=10^k+1 +18k+18-1
=10^k+1+18k+17 chia hết cho 27
Cảm ơn bạn lý phụng nhi rất nhiều =)))))
Trong đề cương toán của mình có câu nay2 mình không biết. Cảm ơn bạn đã dành thời gian cho câu hỏi này
Ngày mai mình thi rồi =))))
Chúc bạn thi tốt nhé .
- chứng minh rằng: với mọi n thuộc N
a, (3n + 5) x (5n + 2 ) chia hết cho 2
b, 10n + 44 chia hết cho 18 ( n khác 0 )
c, 10n + 35 chia hết cho 45 ( n khác 0 )
các bạn giải nhanh giúp mình nha mình đang cần gấp giải rõ ra nha
cảm ơn các bạn
Chứng tỏ rằng vs mọi n thuộc N thì 8n + 111...1 ( n chữ số ) chia hết cho 9
GIÚP MIK NHA , AI NHANH MIK KB VÀ KÍCH , CẢM ƠN TRƯỚC , MIK CẦN GẤP LẮM , GIẢI CÓ LỜI GIAIRA CHO MIK NHA
Chứng minh số A =10 ^n + 18.n -1 chia hết cho 27(với n là số tự nhiên tùy ý)
các bạn giải giúp mình nha ghi đầy đủ ra nhé