Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hai Anh Vũ
Xem chi tiết
Leonah
Xem chi tiết
lyzimi
Xem chi tiết
Minh Triều
21 tháng 2 2016 lúc 19:31

Cách 1 : giả sử a,b,c là 3 cạnh của tam giác đều =>a=b=c

=>\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

Vậy a,b,c là ba cạnh của tam giác đều.

Cách 2: 

\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\Leftrightarrow\frac{c}{b}+\frac{b}{a}+\frac{c}{a}+\frac{a}{c}+\frac{a}{b}+\frac{b}{c}=6\)

<=>\(\left(\frac{c}{b}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)=6\)

Áp dụng BĐT cô-si cho các cặp số không âm sau: c/b và b/c ; b/a và a/b ; c/a và a/c ta được:

\(\left(\frac{c}{b}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge2+2+2=6\)

Mà \(\left(\frac{c}{b}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)=6\)

Do đó chỉ nhận khi dấu "=" xảy ra

Dấu ''=" xảy ra khi a=b=c

Vậy tam giác a,b,c là 3 cạnh của tam giác đều.

Cách 2 khó hỉu :D

Phước Nguyễn
21 tháng 2 2016 lúc 19:09

Bài này bạn dùng cách phá ngoặc và nhóm các hạng tử sẽ ra. Mình đã làm bài này rồi. Bạn tìm trong câu hỏi tương tự sẽ có

Phước Nguyễn
21 tháng 2 2016 lúc 19:13

Lời giải của mình ở đây, bạn tham khảo nhé!

http://olm.vn/hoi-dap/question/374142.html

Chú ý: bạn có thể áp dụng bất đẳng Cô-si với hai số không âm!

Diệp Nguyễn Thị Huyền
Xem chi tiết
Edogawa Conan
5 tháng 7 2021 lúc 9:28

Ta có:

A = \(\frac{a}{2b+3c}+\frac{b}{2c+3a}+\frac{c}{3b+2a}=\frac{a^2}{2ab+3ac}+\frac{b^2}{2bc+3ab}+\frac{c^2}{3bc+2ac}\)

\(\ge\frac{\left(a+b+c\right)^2}{2ab+3ac+2bc+3ab+3bc+2ac}\)(bđt svacxo \(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}+\frac{x_3^2}{y_3}\ge\frac{\left(x_1+x_2+x_3\right)^2}{y_1+y_2+y_3}\))

\(\ge\frac{\left(a+b+c\right)^2}{5\left(ab+bc+ac\right)}\ge\frac{\left(a+b+c\right)^2}{\frac{5\left(a+b+c\right)^2}{3}}\) (bđt \(xy+yz+xz\le\frac{\left(x+y+z\right)^2}{3}\)(*)

CM bđt * <=> \(3xy+3yz+3xz\le x^2+y^2+z^2+2xz+2xy+2yz\)

<=> \(\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\ge0\) (luôn đúng)

<=> A \(\ge\frac{3}{5}\) --> ĐPCM

Khách vãng lai đã xóa
Ngocmai
Xem chi tiết
Hun Pa Han
Xem chi tiết
Phan Nghĩa
13 tháng 7 2020 lúc 10:57

Đặt \(a=x+y;b=y+z;c=z+x\)

Thì bài toán trở thành \(\frac{x+y}{2\left(2x+y\right)}+\frac{y+z}{2\left(2y+z\right)}+\frac{z+x}{2\left(2z+x\right)}\ge1\)

\(< =>3-\frac{x}{2\left(2x+y\right)}-\frac{y}{2\left(2y+z\right)}-\frac{z}{2\left(2z+x\right)}\ge1\)

\(< =>\frac{x}{2x+y}+\frac{y}{2y+z}+\frac{z}{2z+x}\le1\)

\(< =>\frac{2x}{2x+y}+\frac{2y}{2y+z}+\frac{2z}{2z+x}\le2\)

\(< =>3-\frac{y}{2x+y}-\frac{z}{2y+z}-\frac{x}{2z+x}\le2\)

\(< =>\frac{y}{2x+y}+\frac{z}{2y+z}+\frac{x}{2z+x}\ge1\)

Áp dụng Bất đẳng thức AM-GM dạng cộng mẫu thức ta có : 

\(\frac{y}{2x+y}+\frac{z}{2y+z}+\frac{x}{2z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+x^2+y^2+z^2}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z\)hay \(a=b=c\)

Vậy bài toán đã được chứng minh xong 

Khách vãng lai đã xóa
ha thi hoang
14 tháng 7 2020 lúc 20:53

x=y=z hay a=b=c

Khách vãng lai đã xóa
Trương Thị Quỳnh Hoa
17 tháng 7 2020 lúc 16:13

x=y=z hay a=b=c

Khách vãng lai đã xóa
pham trung thanh
Xem chi tiết
nguyễn minh huy
17 tháng 6 2018 lúc 10:00

làm lại dong cuối:\(A\ge\frac{2}{c}+\frac{4}{b}+\frac{6}{a}\)

Mà:\(2c+b=abc\Rightarrow a=\frac{2c+b}{cb}=\frac{2}{b}+\frac{1}{c}\)

\(\Rightarrow2a=\frac{4}{b}+\frac{2}{c}\)

\(\Rightarrow A\ge2a+\frac{6}{a}\)

nguyễn minh huy
17 tháng 6 2018 lúc 9:22

Ta có:\(A=\left(\frac{1}{b+c-a}+\frac{1}{a+c-b}\right)+2\left(\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)\)

\(+3\left(\frac{1}{a+c-b}+\frac{1}{a+b-c}\right)\)

\(\ge\frac{2}{c}+\frac{4}{b}+\frac{6}{c}\) (Do a,b,c là 3 cạnh của tam giác nên:\(\hept{\begin{cases}a+b-c>0\\a+c-b>0\\c+b-a>0\end{cases}}\)

\(=\frac{6}{a}+2a\ge4\sqrt{3}\left(cosi\right)\left(a>0\right)\)

Dấu = xảy ra khi:

\(a=b=c=\sqrt{3}\)

nguyễn minh huy
17 tháng 6 2018 lúc 9:34

xin lỗi các bạn đáp án là\(2\sqrt{3}\)

senorita
Xem chi tiết
Incursion_03
3 tháng 4 2019 lúc 11:27

Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\left(x;y>0\right)\) (tự c/m ha)

\(\frac{7}{a}+\frac{5}{b}+\frac{4}{c}=\left(\frac{4}{a}+\frac{4}{b}\right)+\left(\frac{1}{b}+\frac{1}{c}\right)+\left(\frac{3}{a}+\frac{3}{c}\right)\)

                               \(=4\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{b}+\frac{1}{c}\right)+3\left(\frac{1}{a}+\frac{1}{c}\right)\)

                               \(\ge4.\frac{4}{a+b}+\frac{4}{b+c}+3.\frac{4}{a+c}=4\left(\frac{4}{a+b}+\frac{1}{b+c}+\frac{3}{c+a}\right)\)

Dấu "=" <=> a = b = c

Nguyễn Minh Đăng
Xem chi tiết
Nguyễn Linh Chi
16 tháng 7 2020 lúc 10:25

Ta có: 

\(\frac{3}{a}+\frac{3}{b}=3\left(\frac{1}{a}+\frac{1}{b}\right)\ge3.\frac{4}{a+b}=4.\frac{3}{a+b}\)

\(\frac{2}{b}+\frac{2}{c}\ge4.\frac{2}{b+c}\)

\(\frac{1}{c}+\frac{1}{a}\ge4.\frac{1}{a+c}\)

=> \(\frac{4}{a}+\frac{5}{b}+\frac{3}{c}\ge4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)

Dấu "=" xảy ra <=> a = b = c

Khách vãng lai đã xóa