Tính tổng S
S=1+2+2^2+2^3+...+2^2014/1-2^2015
Tính tổng: 1 x 2015 + 2 x 2014 + 3 x 2013 + … + 2014 x 2 + 2015 x 1
Tính tổng:
A= 1+2014^1+2014^2+2014^3+...+2014^2014+2014^2015
B = 3-3^2+3^3+3^4+...+3^100
A = 1 + 2014^1 + 2014^2 + 2014^3 + ... + 2014^2014 + 2014^2015
2014A = 2014^1 + 2014^2 + 2014^3 + 2014^4 + ... 2014^2015 + 2014^2016
2014A - A = ( 2014^1 + 2014^2 + 2014^3 + 2014^4 + .... + 2014^2015 + 2014^2016 ) - ( 1 + 2014^1 + 2014^2 + 2014^3 + ... + 2014^2014 + 2014^2015 )
2013A = 2014^2016 - 1
A = 2014^2016 - 1 / 2013
B = 3 - 3^2 + 3^3 + 3^4 + ... + 3^100 ( đề hơi vui )
3B = 3^2 - 3^3 + 3^4 + 3^5 + ... + 3^101
3B - B = ( 3^2 - 3^3 + 3^4 + 3^5 + ... + 3^101 ) - ( 3 - 3^2 + 3^3 + 3^4 + ... + 3^100 )
2B = ( 3^2 - 3^3 + 3^4 + 3^5 + ... + 3^101 ) - 3 + 3^2 - 3^3 - 3^4 - ... - 3^100
2B = 3^2 - 3^3 + 3^101 - 3 + 3^2 - 3^3
2B = 9 - 27 + 3^101 - 3 + 9 - 27
2B = -18 + 3^101 - 3 + ( -18 )
2B = -39 + 3^101
B = -39 + 3^101 / 2
A = 1 + 2014 + 20142 + 20143 + ... + 20142014 + 20142015
2014A = 2014 + 20142 + 20143 + 20144 + ... + 20142015 + 20142016
2014A - A = ( 2014 + 20142 + 20143 + 20144 + ... + 20142015 + 20142016 ) - ( 1 + 2014 + 20142 + 20143 + ... + 20142014 + 20142015 )
2013A = 20142016 - 1
A \(=\frac{2014^{2016}-1}{2013}\)
B = 3 - 32 + 33 - 34 + ... + 3100
3B= 32 - 33 + 34 - 35 + ... + 3101
3B + B = ( 3 - 32 + 33 - 34 + ... + 3100 ) + ( 32 - 33 + 34 - 35 + ... + 3101 )
4B = 3 + 3101
B = \(\frac{3+3^{101}}{4}\)
Bài 1 : Tính tổng
a) 1 *2 *3 + 2 * 3 *4 + 3 * 4 * 5 + ... + 2013 * 2014 * 2015 + 2014 * 2015 * 2016
b) 1 * + 3 * 4 + 5 * 6 + ... + 99 * 100
Bài 2 : CMR : 1^3 + 2^3 + 3^3 + ... + n^3 = ( 1 + 2 + 3 + ... + n )^2
Tính các tổng sau:
a) A=1+(-2) + 3 +(-4) + ...+(- 2014) + 2015;
b) B= (-2) + 4 +(-6) + 8 ... +(-2014) + 2016;
c) 1+(-3) + 5 +(-7) + ... + 2013 +(-2015);
d) (-2015) + (-2014) + (-2013)+ ... + 2015 + 2016
\(A=\left[1+\left(-2\right)\right]+\left[3+\left(-4\right)\right]+....+\left[2013+\left(-2014\right)+2015\right]\)
\(A=\left(-1\right)+\left(-1\right)+....+\left(-1\right)+2015\left(\text{1007 số hạng }\left(-1\right)\right)=1008\)
\(B=\left(-2\right)+4+\left(-6\right)+8+\left(-10\right)+,...+\left(-2014\right)+2016\)
\(B=2+2+....+2\left(\text{504 số hạng 2}\right)=1008\)
c) 1 + ( -3 ) +5 + ( -7 ) + ...........+ 2013 + ( -2015 )
[ 1 + (-3 ) ] + [ 5 + -7 ] + .......... + [ 2013 + ( - 2015 ) ]
có số cặp là : [ ( 2015 - 1 ) : 2 + 1 ] : 2 = 504 ( cặp )
= -2 + -2 + -2 +..........+ -2
= -2 x 504
= -1008
Tính tổng: S= (- 1) + (- 1) ^ 2 + (- 1) ^ 3 +...+(-1)^ 2014 +(-1)^ 2015
\(\cdot DuyNam\)
\(S=\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+...+\left(-1\right)^{2014}+\left(-1\right)^{2015}\)
\(S=\left(-1\right)+1+\left(-1\right)+...+1+\left(-1\right)\) (2015 thừa số)
`-> S= (-1)`
Tính:
(2014/1+2014/2+2013/3+...+2/2014+1/2015)/(3/2015+3/2014+...+3/2)
tính các tổng sau
a, S1=1+(-2)+3+(-4)+..........+(-2014)+2015
b,S2=(-2)+4+(-6)+8+...............+(-2014)+2016
c,S3=1+(-3)+5+(-7)+................+2013+(-2015)
d,S4=(-2015)+(-2014)+(-2013)+......+2015+2016
làm đầy đủ chắc chắn cho mk nhé !
a, s1 có 2015 hạng tử
=> s1= (2014:2).-1+2015=1007.(-1)+2015=1008
Lời giải:
a,S1=1+(-2)+3+(-4)+...+(-2014)+2015
=(1-2)+(3-4)+...+(2013-2014)+2015
=-1+(-1)+...+(-1)+2015
=-1.1007+2015
=(-1007)+2015
=1008
b,S2=(-2)+4+(-6)+8+...+(-2014)+2016
=(-2+4)+(-6+8)+...+(-2014+2016)
=2+2+...+2
=2.504
=1008
c,S3=1+(-3)+5+(-7)+...+2013+(-2015)
=(1-3)+(5-7)+...+(2013-2015)
=(-2)+(-2)+...+(-2)
=(-2).504
=-1008
d,S4=(-2015)+(-2014)+(-2013)+...+2015+2016
=(-2015+2015)+...+0+2016
=0+...+0+2016
=2016
STUDY WELL !
Cô ơi dấu hiệu chia hết cho 5 em mở không được
Tính tổng sau : S = 2^2015 - 2^2014 - 2^2013 - ....- 2-1
Gọi A = 2^2015 - 2^2014 - ... -2 - 1
2A = 2^2016 - 2^2015 - ... -2^2 - 2
2A - A = 2^2016 - 2 ^2015 - ...-2^2-2 - 2^2015 +2^2014 + .... +2 + 1
A = 2^2016 - 2.2^2015 + 1
A = 2^2016 - 2^2016 + 1
A = 1
h dung nha
Tính tổng Q=2017^2-2016^2+2015^2-2014^2+.....+2^2-1^2