Tìm a= \(3^{n+1}\)+\(3^n\)-1, b= 2. \(3^{n+1}\)-\(3^n\)+1 (n ∈ N). Chứng minh a hoặc b không chia hết cho 7
a) Cho n không chia hết cho 3. Chứng minh n^2:3 dư 1
b) Cho n không chia hết cho 5. Chứng minh n^4 : 5 dư 1
c) Cho n không chia hết cho 7. Chứng minh n^6 :7 dư 1
a,
n kog chia hết cho 3. Ta có: n = 3k +1 và n = 3k+2
TH1: n2 : 3 <=> (3k+1)2 : 3 = (9k2+6k+1) : 3 => dư 1
TH2: n2 : 3 <=> (3k+2)2 : 3 = (9k2+12k+4) : 3 = (9k2+12k+3+1) : 3 => dư 1
các phần sau làm tương tự.
1) A=19a68b
a) A chia hết cho 2;3;5 và không chia hết cho 9
b) A chia hết cho 45
c) A chia hết cho 3 và chia co 5 dư 3
d) A chia hết cho 9 và a-b=4
2) Tìm n thuộc N để:
a) 20 chia hết cho n
b) n+4 chia hết cho n
c) n+8 chia hết cho n+3
d) n+6 chia hết cho n-1
e) 12-n chia hết cho 8-n
f) 3n + 2 chai hết cho n-1
3) Chứng minh rằng:
A=1+3+32+...+311 chia hết cho 13
B=1+2+22+23+...239 chia hết cho 15
4) Cho a,b thuộc N và a-b chia hết cho 7.Chứng minh rằng 4a + 3b chia hết cho 7
1. Chứng minh:
24n-2+1 chia hết cho 5 (n thuộc N*)
2. Tìm n thuộc N để:
a) n+5 chia hết cho n-1 (n lớn hơn hoặc bawngf1)
b) 2n+7 chia hết cho n+1.
3. Rút gọn:
a) A= 1+3+32+33+...+3100.
b) B= 1+32+34+36+...+3100.
M.n giúp mình nha, thank ^_^
2. (n+5)\(⋮\)(n-1)
(n-1+6) chia hết (n-1)
mà n-1 chia hết cho n-1
Để (n-1+6) chia hết cho (n-1) thì 6 pải chia hết cho (n-1)
Hay (n-1) thuộc ước của 6 mà ước của 6=....
Tự làm tiếp nha ^^
Làm giùm mình 1 bài thui cũng được, xin đó!
3. a,3A=3(1+3+3^2+3^3+...+3^100)
3A= 3+3^2+3^3+3^4+....+3^101
3A-A= 3^101-1
A=\(\frac{3^{101}-1}{2}\)
Ko bt đúng hay ko chúc bn học tốt
1/chứng minh rằng nếu \(a^2+b^2\)chia hết cho 3 thì cả a và b đều chia hết cho 3
2/ chứng minh rằng \(1^n+2^n+3^n+4^n\)chia hết cho 5 khi và chỉ khi n không chia hết cho 4 ,n thuộc N*
3/ tìm tất cả số tự nhiên n để
a/ \(3^n+63\)chia hết cho 72
b/ \(2^{2n}+2^n+1\)chia hết cho 7
Bài 1:
cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3
Giả sử a và b đồng thời đều không chia hết cho 3
Vì a không chia hết cho 3 nên ⇒ a2 : 3 dư 1
vì b không chia hết cho b nên ⇒ b2 : 3 dư 1
⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)
Vậy a; b không thể đồng thời không chia hết cho ba
Giả sử a ⋮ 3; b không chia hết cho 3
a ⋮ 3 ⇒ a 2 ⋮ 3
Mà a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết)
Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra
Từ những lập luận trên ta có:
a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
chứng minh rằng số A(n) = 2^3n +1 chia hết cho 3^(n+1) nhưng không chia hết cho 3^(n+2chứng minh rằng số A(n) = 2^3^n +1 chia hết cho 3^(n+1) nhưng không chia hết cho 3^(n+2)
Bài 1 : tìm n € N*
2^n+1 chia hết 7
n^5+1 chia hết n^3+1
Bài 2: chứng minh rằng
a+b+c chia hết cho 6 => a^3+b^3+c^3 chia hết cho 6
36^38+41^43 chia hết cho 77
5.25^n+18.2^n chia hết cho 23
Bài 1 : Chứng minh :
a) (3n+1) . (n-1)-n.(3n+1)+7 chia hết cho 3
.(n+3)-2n+3 chia hết cho 9
Bài 2 : Tìm x , y thuộc Z , để :
a)x.y=-7
b)(x+1).(y+2)=7
c) (x+1).(y+3)-4=3
Bài 3 :Tìm x thuộc Z , để :
a)x-4 chia hết cho x-1
b)3x+2 chia hết cho 2x-1
Bài 5 : Chứng minh : Với mọi a thuộc Z , thì :
a (a-1).(a+2)+12 không là Bội của 9
b)49 không là Ước của (a+2).(a+9)+21
Ai làm nhanh nhất mk cho 5 T.I.C.K