Cho x = a/b, y = c/d, z = a+c/b+d (a, b, c,d thuộc Z; b, d >0). Chứng tỏ rằng nếu x<y thì x<z<y
cho các số hữu tỉ x=a/b , y=c/d , z=a+c/b+d ( a,b,c,d thuộc Z , b,d khác 0 ) CMR nếu x<y thì x<y<z
ĐỀ sai
a = 1 ; b = 4 ; c = 1 ; d = 2 ta có
\(\frac{1}{4}
cho các số hữu tỉ x=a/b,y=c/d. z=a+c/b+d(a,b,c,d thuộc Z;b,d >0).Chứng minh rằng nếu x<y thì x<z<y
+)Vì x<y
Suy ra a/b<c/d
Suy ra a.b+a.d<b.c+b.a
Suy ra a.(b+d)<b.(c+a)
Suy ra a/b<c+a/b+d
Suy ra a/b<c+a/b+d<c/d
Suy ra x<z<y
Chứng mình rằng , nếu x<y thì x<z<y
Biết x=a/b , y=c/d , z=a+c/b+d (a,b,c,d thuộc Z , b>d>0)
Cho các số hữu tỉ x=a/b ; y=c/d ; z = a+c/ b+d ( với a;b;c;d thuộc z ; b ; d > 0 )
Chứng minh rằng nếu x<y thì x<z<y
Bài 1 tìm x y biết x/y+z+1=y/x+z+1=z/x+y-2=x+y+z
Bài 2 cho a(y+z)=b(z+x)=c(x+y) với a khác b khác c và a,b,c khác 0 Cmr y-z/a(b-c)=z-x/b(c-a)=x-y/c(a-b)
Bài 3 tìm p/s dạng p/s tối giản a/b biết a/b=a+6/b+9 với a,b thuộc Z , b khác 0
Bài4cho 4 tỉ số bằng nhau a+b+c/d ; b+c+d/a ; c+d+a/a ; d+a+b/c tính giá trị của mỗi tỉ số trên
1) cho a,b,c,d thuộc Z. thỏa mãn a-(-b+d)=c
chứng tỏ rằng a+b = c+d
2) tìm x,y thuộc Z biet /x-24/+/y+8/
1. Cho hai số nguyên
A=(x+y)-(z+t)
B=(x-z)+(y-t)
Hãy so sánh A và B
2. Tìm số nguyên x, biết rằng tổng của ba số 3, -2 và x bằng 5
3. Cho a,b,c, thuộc Z. Chứng tỏ a-b-c và b+c-a là hai số đối nhau.
4.Cho a, b, c, d thuộc Z. Đơn giản các biểu thức sau:
a) M= (a - b) + (b - c) - (d - c)- (a - d)
b) N = (a + b) + (c - d) - (c + a) - (b - d).
1.
\(A=\left(x+y\right)-\left(z+t\right)\)
\(A=x+y-z-t\)
\(A=\left(x-z\right)+\left(y-t\right)\)
\(\Rightarrow A=B\)
Gọi: A = a - b - c
B = b + c - a
Vì tổng của 2 số đối nhau sẽ bằng 0
\(\Rightarrow A+B=a-b-c+b+c-a\)
\(\Rightarrow(a-a)+(b-b)+(-c+c)\)
\(\Rightarrow A+B=0\)
Vậy A, B là 2 số đối nhau
P/s: Hoq chắc ((:
Cho x=\(\frac{a}{b};\ y=\frac{c}{d};\ z=\frac{a}{b}+\frac{c}{d}\left(a,b,c,d\ thuộc\ Z\ ;\ b>0,d>0\right)\)
Bài 1: cho dãy tỉ số bằng nhau: a/b+c+d = b/a+c+d = c/a+b+d = d/a+b+c Tính B= a+b/c+d + b+c/a+d + c+d/a+ + d+a/b+c Bài 2: tìm x,y,z biết: y+2+1/x = x+y+2/y = x+y.3/z = 1/x+y+z