Cho P=1.3.5.7...2013. Chứng minh rằng trong 3 số tự nhiên liên tiếp 2P-1; 2P; 2P+1 không có số nào là số chính phương.
Cho N = 1.3.5.7....2013. Chứng minh rằng trong 3 số tự nhiên liên tiếp 2N -1; 2N ;2N + 1 ko có số nào là số chính phương
Ta có: N = 1.3.5.7.....2013
=> 2N = 2.1.3.5.7.....2013
Vì 2N chia hết cho 2 mà không chia hết cho 4
=> 2N không là số chính phương
Vì 2N chia hết cho 3
=> 2N - 1 chia cho 3 dư 2
=> 2N - 1 không là số chính phương
Vì 2N chia hết cho 2 mà không chia hết cho 4
=> 2N chia cho 4 dư 2
=> 2N + 1 chia cho 4 dư 3
=> 2N + 1 không là số chính phương
Vậy trong 3 số tự nhiên liên tiếp 2N - 1, 2N, 2N + 1 không có số nào là số chính phương.
Cho N = 1.3.5.7....2013. Chứng minh trong 3 số tự nhiên liên tiếp : 2N -1 , 2N , 2N + 1 ko có số nào là số chính phương .
Ta có: 2N = 2.1.3.5.7.....2013
=> 2N chia hết cho 3
=> 2N - 1 chia cho 3 dư 2
=> 2N - 1 không là SCP
Ta có: N = 1.3.5.7.....2013
=> 2N = 2.1.3.5.7.....2013
Vì 2N chia hết cho 2 mà không chia hết cho 4 => 2N không là SCP
Biết làm mỗi vậy thôi, chờ tí nữa nghĩ tiếp.
2N = 2 . ( 1.3.5.7...2013)
2N = 2 .4.10 ....4016
gỉa sử P=1.3.5.7...2017 Chứng minh rằng trong3 số nguyên liên tiếp 2p-1;2p;2p+1 không có số nào là số chính phương.
Số chính phương hay còn gọi là số hình vuông là số tự nhiên có căn bậc 2 là mộtsố tự nhiên, hay nói cách khác, số chính phương là bình phương (lũy thừa bậc 2) của một số tự nhiên khác. Số chính phương hiển thị diện tích của một hình vuông có chiều dài cạnh bằng số nguyên kia .
ta có đây là một dãy cac số lẻ , mà chắc chắn sẽ phải có một số số chính phương trong dãy như :
9 ; 81 ; 49 ; 25 ; ...........
vô số các số chính phương đó sẽ nằm vào 3 số tự nhiên liên tiếp , nên trong 3 số , một số lúc sẽ có còn đôi lúc là không có số chính phương trong 3 số tự nhiên liên tiếp .
hay còn cách khác để xác định , đó là 2 cách sau :
- xác định bằng ví dụ
- sử dụng định lý
cách thứ nhất ( xác định bằng ví dụ ) , ta phải làm ít nhất 3 ví dụ như sau :
1 , 3 , 5
7 , 9 , 11
81 , 83 , 85
- thực hiện 1 trong 2 cách để đưa ra kết quả .
Kết luận : đôi khi , trong 3 số nguyên liên tiếp 2p - 1 ; 2p ; 2p + 1 sẽ có số chính phương .
còn khi là 2p thì sẽ không có đâu , vì p tận cùng là 5 , 2p tận cùng là 0 , không bao giờ có 2p là số chính phương , vì 2p có tận cùng là 0 , bắt buộc cơ số là 10 , 100 , 1000 , ........... nên không thể .
có gì sai sữa giúp tớ nhé .
cho N=1.3.5.7...2013.2015.Chứng minh rằng trong 3 số liên tiếp 2N-1;2N;2N+1 không có số nào là số chính phương?
Chứng minh rằng:
a, Trong 2 số tự nhiên liên tiếp có 1 số chia hết cho 2.
b, Trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3.
a )Trong 2 số tự nhiên liên tiếp có 1 số lẻ và 1 số chẵn . Vì số chẵn chia hết cho 2 nên trong 2 số tự nhiên liên tiếp có 1 số chia hết cho 2
a)vì 2 STN liên tiếp sẽ có 1 số chẵn và 1 số lẻ
mà sô chẵn chia hết cho2
b)vì 3 STN liên tiếp có 1 số chia 3 dư 1,1 số chia 3 dư 2 và 1 số chia hết cho 3
chúc hok tốt!!!
Note:lập luận trên chưa chắc chắn lắm...
Chứng minh rằng:
+ Trong hai số tự nhiên liên tiếp có 1 số chia hết cho 2.
+ Trong ba số tự nhiên liên tiếp có 1 số chia hết cho 3.
a) chứng minh rằng trong 3 số tự nhiên liên tiếp chắc chắn có một số chia hết cho 2 , và một số chia hết cho 3
b) chứng minh rằng tích của 3 số tự nhiên liên tiếp chia hết cho 6
Chứng minh rằng
Trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3
Trong 4 số tự nhiên liên tiếp có 1 sô chia hết cho 4
Tổng 3 số tự nhiên liên tiếp chia hết cho 3
Tổng 3 số chẵn liên tiếp chia hết cho 6
Tổng 2 số lẻ liên tiếp chia hết cho 4
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
gọi 3 số tự liên tiếp đó là a;a+1;a+2
ta có : a+[a+1]+[a+2]
=[a+a+a]+[1+2]
=3a + 3
=3 x [a+1] chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3.
Bài 1:Cho a,b là 2 số tự nhiên. Biết Rằng a chia cho 5 dư 3 và b chia cho 5 dư 2. Chứng minh rằng ab chia cho 5 dư 1
Bài 2:Cho 3 số tự nhiên liên tiếp. Tích của 2 số đầu nhỏ hơn tích của 2 số sáu là 50. hỏi đã cho 3 số nào?
Bài 3: Cho a+b+c=2p. Chứng minh 2bc+b mũ 2+c mũ 2-a mũ 2= 4p(p-a)
Bài 4: Cho 3 số chẵn liên tiếp. Tích của 2 số sau lớn hơn tích của hai số đầu là 192. Hỏi đã cho 3 số nào?
1:
a chia 5 dư 3 nên a=5k+3
b chia 5 dư 2 nên b=5c+2
a*b=(5k+3)(5c+2)
=25kc+10k+15c+6
=5(5kc+2k+3c+1)+1 chia 5 dư 1
2:
Gọi ba số liên tiếp là a;a+1;a+2
Theo đề, ta có:
(a+1)(a+2)-a(a+1)=50
=>a^2+3a+2-a^2-a=50
=>2a+2=50
=>2a=48
=>a=24
=>Ba số cần tìm là 24;25;26