Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Ngọc Uyển Nhi
Xem chi tiết
Cold girl love Bangtan S...
Xem chi tiết
satoshi
28 tháng 10 2019 lúc 19:26

b1,n+5\vdots n+1

\Rightarrow n+1+4\vdots n+1

\Rightarrow 4\vdots n+1 ( Vì n+1\vdots n+1 )

\Rightarrow n+1\in Ư(4) Ư(4)

Mà : Ư(4) = \left \{ 1; 2; 4 \right \}

*TH1 :

n+1=1

\Rightarrow n=1-1

\Rightarrow n=0

* TH2:

n+1=2

\Rightarrow n=2-1

\Rightarrow n=1

* TH3:

n+1=4

\Rightarrow n=4-1

\Rightarrow n=3

Vậy : n \in \left \{ 0;1;3 \right \}

Khách vãng lai đã xóa
satoshi
28 tháng 10 2019 lúc 19:27

Ta có :

abba=1000a+100b+10b+a

=1001a+110b

=11.(91a+10b)

Số nào nhân với 11 cũng chia hết cho 11.

đpcm

Khách vãng lai đã xóa
satoshi
28 tháng 10 2019 lúc 19:29

b3,ta có

abab=1000a+100b+10a+b

=1010a+101b=101\left(10a+b\right)vì 101 chia hết cho 101

=> abab là bội của 101

Khách vãng lai đã xóa
Anh hung thien cuong
Xem chi tiết
Le Anh Tuan
Xem chi tiết
Soobin
Xem chi tiết
huy luong van
Xem chi tiết

      Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

         Bài 1: CM A = n2 + n + 6 ⋮ 2 

+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)

  Khi đó: A = (2k)2 + 2k + 6 

              A = 4k2 + 2k + 6

             A =  2.(2k2 + k + 3)  ⋮ 2

+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ

         Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn

            ⇒  A = n2 + n + 6 là số chẵn 

                A = n2 + n + 6 ⋮ 2

+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N

       

 

           

             

 

 

Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:

Bài 2: CM:  A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N

          Với n = 1 ta có: A = 13 + 1.5 

                A = 1 + 5 = 6 ⋮ 6

          Giả sử A đúng với n = k (k \(\in\) N)

          Khi đó ta có: A  = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)

          Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k  + 1

          Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6

Thật vậy với n = k + 1 ta có: 

       A = (k  + 1)3 + 5(k + 1) 

      A = (k  +1).(k  + 1)(k + 1) + 5.(k  +1)

     A = (k2 + k + k  +1).(k + 1) + 5k  +5

     A =  [k2 + (k + k) + 1].(k + 1) + 5k + 5

    A = [k2 + 2k + 1].(k + 1) + 5k + 5

   A = k3 + k2 + 2k2 + 2k + k  +1  +5k  +5

   A  = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5) 

    A = (k3 + 5k) + 3k2 + 3k + 6

   A = (k3 + 5k) + 3k(k +1) + 6

   k.(k  +1) là tích của hai số liên tiếp nên luôn chia hết cho 2

 ⇒ 3.k.(k + 1) ⋮ 6 (2)

     6 ⋮ 6 (3)

Kết hợp (1); (2) và (3) ta có:

    A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N

Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm) 

 

 

      

 

 

 

                  

           

          

 

                 

 

 

 

                           Bài 3: 

Đây là toán nâng cao chuyên đề tính chất chia hết của một tích, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

                               Giải:

A = (n + 20132012).( n + 20122013)

TH1: Nếu n  là số chẵn ta có:

    2012 là số chẵn nên 20122013 là số chẵn suy ra n + 201213 là số chẵn. Mà số chẵn thì luôn chia hết cho 2

Vậy A = (n + 20132012).(n + 20122013) ⋮ 2 \(\forall\) n là số chẵn (1)

TH2: Nếu n là số lẻ ta có:

   2013 là số lẻ nên 20132012 là số lẻ khi đó ta có 

  n + 20132012 là số chẵn vì tổng của hai số lẻ là một số chẵn mà số chẵn thì luôn chia hết cho 2

Vậy A = (n + 20132012).(n + 20122013) ⋮ 2 \(\forall\) n là số lẻ (2)

Kết hợp (1) và (2) ta có:

A = (n + 20132012).(n + 20122013) ⋮ 2 ∀ n \(\in\) N

     

 

 

Phương Bùi Mai
Xem chi tiết
Đinh Đức Hùng
18 tháng 7 2017 lúc 11:09

a ) \(5^{61}+25^{31}+125^{21}=5^{61}+5^{62}+5^{63}=5^{61}\left(1+5+25\right)=5^{61}.31⋮31\)(đpcm)

b ) \(6^3+2.6^2+3^3=2^3.3^3+2^3.3^2+3^3=3^2\left(8.3+8+3\right)=3^2.35⋮35\) (đpcm)

Vậy ........

Phương Bùi Mai
18 tháng 7 2017 lúc 11:25

Cảm ơn các bạn nhiều lắm nha!!!

Cao Nguyễn Như Quỳnh
Xem chi tiết
Thành Vinh Lê
8 tháng 8 2018 lúc 22:06

a)4n+6 chia hết cho 2 với mọi n nên ta có đpcm

b)Cả 2 thừa số dều lẻ với mọi n nên ta có đpcm

Dương Lam Hàng
8 tháng 8 2018 lúc 22:13

a) Ta có: 4n+6 có chữ số tận cùng là số chẵn

=> (4n+6).(5n+7) cũng có chữ số tận cùng là số chẵn

Mà các số có chữ số chẵn tận cùng đều chia hết cho 2

Vậy (5n+7).(4n+6) chia hết cho 2

b) Ta thấy: 8n+1 có chữ số tận cùng là một số lẻ

                 6n+5 có chữ số tận cùng cũng là một số lẻ

=> (8n+1).(6n+5) có chữ số tận cùng là một số lẻ

=> (8n+1).(6n+5) không chia hết cho 2

Tớ Đông Đặc ATSM
8 tháng 8 2018 lúc 22:13

a,A= (5n+7).(4n+6)

= (5n+7).2( 2n+3) => A chia hêt co 2 với mọi số tn n

b, B= (8n+1)(6n+5)

= 42n2+46n+4+1

=2( 21n2+23n+2)+1 => B không chia hết cho 2 với mọi số tn n 

lv1
Xem chi tiết
Minh Hiền
24 tháng 7 2015 lúc 9:31

abcabc = abc.1001= abc.77.13 chia hết cho 13

=> số có dạng abcabc luôn chia hết cho 13

Tô Minh Thắm
24 tháng 7 2015 lúc 9:45

Ta có:abcabc=abc*77*13

=>abcabc chia hết cho 13

Vậy số có dạng abcabc luôn chia hết cho 13

 Phạm Trà Giang
21 tháng 7 2017 lúc 8:37

Ta có: abcabc = abc x 77 x 13

=> abcabc chia hết cho 13

Vậy số có dạng abcabc luôn chia hết cho 13