Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
cao van bao
Xem chi tiết
Thiên Phong
Xem chi tiết
Chu Văn Long
26 tháng 9 2016 lúc 23:47

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{\left(xy+yz+zx\right)^2}{x^2y^2z^2}\)(1) với x+y+z=0. Bạn quy đồng vế trái (1) dc \(\frac{x^2y^2+y^2z^2+z^2x^2}{x^2y^2z^2}=\frac{\left(xy+yz+zx\right)^2-2\left(x+y+z\right)xyz}{x^2y^2z^2}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 8 2017 lúc 8:24

Xét số hữu tỉ a/b, có thể coi b > 0.

Nếu a, b cùng dấu thì a > 0 và b > 0.

Suy ra (a/b) > (0/b) = 0 tức là a/b dương.

Cao Văn Bảo
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 1 2017 lúc 10:52

Xét số hữu tỉ a/b, có thể coi b > 0.

Nếu a, b khác dấu thì a < 0 và b > 0.

Suy ra (a/b) < (0/b) = 0 tức là a/b âm.

Đoàn Thị Thu Hương
Xem chi tiết
Thầy Giáo Toán
20 tháng 8 2015 lúc 9:38

Cho 3 **** kiểu gì nào?

a) a,b có thể là số vô tỉ. Ví dụ \(a=b=\sqrt{2}\) là vô tỉ mà ab và a/b đều hữu tỉ.

b) Trong trường hợp này \(a,b\) không là số vô tỉ (tức cả a,b đều là số hữu tỉ). Thực vậy theo giả thiết  \(a=bt\),  với \(t\) là số hữu tỉ khác \(-1\). Khi đó \(a+b=b\left(1+t\right)=s\) là số hữu tỉ, suy ra \(b=\frac{s}{1+t}\) là số hữu tỉ. Vì vậy \(a=bt\)  cũng hữu tỉ.

c) Trong trường hợp này \(a,b\)  có thể kaf số vô tỉ. Ví dụ ta lấy \(a=1-\sqrt{3},b=3+\sqrt{3}\to a,b\) vô tỉ nhưng \(a+b=4\)  là số hữu tỉ và \(a^2b^2=\left(ab\right)^2=12\)  cũng là số hữu tỉ.

khúc thị xuân quỳnh
Xem chi tiết
Nguyễn Quốc Khánh
Xem chi tiết
Nguyễn Linh Chi
25 tháng 4 2019 lúc 21:51

Ta có:

\(P\left(1\right)=a+b+c\)

\(P\left(4\right)=16a+4b+c\)

\(P\left(9\right)=81a+9b+c\)

Vì P(1); P(4) là số hữu tỉ nên \(P\left(4\right)-P\left(1\right)=15a+3b=3\left(5a+b\right)\)là số hữu tỉ

=> \(5a+b\)là số hữu tỉ (1)

Vì P(1); P(9) là số hữu tỉ nên \(P\left(9\right)-P\left(1\right)=80a+8b=8\left(10a+b\right)\)là số hữu tỉ

=> \(10a+b\)là số hữu tỉ (2)

Từ (1), (2) => \(\left(10a+b\right)-\left(5a+b\right)=10a+b-5a-b=5a\)là số hữu tỉ

=> a là số hữu tỉ

Từ (1)=> b là số hữu tỉ

=> c là số hữu tỉ

Sagittarus
Xem chi tiết
Trần Thị Loan
29 tháng 6 2015 lúc 22:29

Giả sử b khác 0 => \(\sqrt{p}=-\frac{a}{b}\)

p là số nguyên tố nên \(\sqrt{p}\) là số vô tỉ

a; b là số hữu tỉ nên \(-\frac{a}{b}\) là số hữu tỉ

=> Vô lý=> b = 0 => a = 0 => đpcm

Ác Mộng
29 tháng 6 2015 lúc 22:33

p là số nguyên tố=>\(\sqrt{p}\)là số vô tỉ

=>b\(\sqrt{p}\) là số vô tỉ nếu b khác 0 hoặc b\(\sqrt{p}\)=0 nếu b=0

=>a+b\(\sqrt{p}\)=0

*)b khác 0 =>a=-b\(\sqrt{p}\)

mà a là số hữ tỉ b\(\sqrt{p}\) là số vô tỉ(L)

*)b=0=>b\(\sqrt{p}\)=0=>a+0=0

=>a=0

Vậy a=b=0